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1 Introduction

Let K be a field and X = (xij ) an (m × n)-matrix of indeterminates over K

having n ≥ m. With S = K[xij ] the polynomial ring in the xij , the matrix X

determines the generic S-linear map φ : Sn → Sm. Let SpecR be the locus
in SpecS where φ has non-maximal rank; equivalently R is the quotient of S

given by the maximal minors of X.
The classical R-modules Ma = cok

∧a
Sφ are familiar objects in commuta-

tive algebra. In particular it is known that they are maximal Cohen–Macaulay
and are resolved by the Buchsbaum-Rim complex ([7, Corollary 2.6], see also
[8, 23]). In this paper we show that the (Ma)a conspire to yield a kind of non-
commutative desingularization of the singular variety SpecR. More precisely
we prove the following result.

Theorem A (Thm. 6.5) For 1 ≤ a ≤ m put Ma = cok
∧a

Sφ and M = ⊕
a Ma .

Then the endomorphism algebra E = EndR(M) is maximal Cohen–Macaulay
as an R-module, and has moreover finite global dimension.

If m = n then R is the hypersurface ring R = S/(detφ) and hence R is
Gorenstein. In this case our non-commutative desingularization is an example
of a non-commutative crepant resolution as defined in [21]. Non-commutative
desingularizations occurred probably first in theoretical physics (e.g. [2]) but
they have recently been encountered in a number of purely mathematical con-
texts (e.g. [3, 14, 15, 17, 20]).

The next result is a description by generators and relations of the non-
commutative resolution E.
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Theorem B (Rem. 7.6, Thm. 7.17) As a K-algebra, E is isomorphic to the
path algebra KQ̃ of the quiver

Q̃ : 1 g1...
gn

2 g1...
gn

...
λ1

λm

· · · · · ·
...
λ1

λm

g1...
gn

m

...
λ1

λm

modulo relations

λiλj + λjλi = 0 = λ2
i for i, j = 1, . . . ,m;

gigj + gjgi = 0 = g2
i for i, j = 1, . . . , n;

λk(λigj + gjλi) = (λigj + gjλi)λk

for i, k = 1, . . . ,m, j = 1, . . . , n; and

gl(λigj + gjλi) = (λigj + gjλi)gl for i = 1, . . . ,m, j, l = 1, . . . , n

(terms in those relations which go outside the quiver are silently suppressed,
see Sect. 7.5).

Despite the fact that Theorems A and B have purely algebraic statements,
we will prove them by relying on algebraic geometry. In our proofs we use
the classical fact that SpecR has a Springer type resolution of singularities.
To be precise, define the incidence variety

Z = {([λ], θ) ∈ P
m−1(K) × Mm×n(K) |λθ = 0}

with projections p′ : Z → P
m−1 and q ′ : Z → SpecR. The following theo-

rem contains the key geometric facts we use.

Theorem C (Thm. 6.2, Thm. 6.4, Thm. 6.5) The scheme Z is projective over
SpecR, which is of finite type over K . The OZ -module

T := p′∗
(

m⊕

a=1

(
∧a−1

�Pm−1

)

(a)

)

is a classical tilting bundle on Z in the sense of [13], i.e.

(1) T is a locally free sheaf, in particular, a perfect complex on Z ,
(2) T generates the derived category D(Qch(Z)), in that Ext•O Z

(T ,C) = 0
for a complex C in D(Qch(Z)) implies C ∼= 0, and

(3) HomO Z (T , T [i]) = 0 for i 	= 0.
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Furthermore we have

(3) M ∼= Rq ′∗T , and
(4) E ∼= EndZ (T ).

This theorem implies in particular that the geometric resolution Z and the
non-commutative resolution E are derived equivalent [19]. Hence Z parame-
trizes certain objects in the derived category of E. The following result gives
a more precise interpretation of this idea.

Theorem D (Thm. 8.9) The variety Z is the fine moduli space for the Q̃-rep-
resentations W of dimension vector (1,m − 1,

(
m−1

2

)
, . . . ,1) that are gener-

ated by the last component Wm.

The proof of Theorem C is based on the explicit (and characteristic-free)
computation of the cohomology of certain homogeneous bundles on P

m−1.
More precisely, for

Mb
a = H omO

Pm−1

((∧b−1
�

)
(b),

(∧a−1
�

)
(a)

)

we compute in Theorem 3.9 the cohomology of Mb
a(−c) for c ∈ Z. (The

interested reader may wish to compare the Appendix by Weyman to [10],
which, by different methods, computes as a special case Exti (

∧p
�,

∧q
�)

for all i ≥ 0.) This result is used in Theorem 5.3 to compute the shape of the
minimal S-projective resolution of q ′∗p′∗Mb

a(−c) in many cases. This yields
in particular a large supply of maximal Cohen-Macaulay R-modules.

To prove Theorem 5.3 we use a new “degeneracy criterion for sparse spec-
tral sequences” (see Proposition 4.4) which we think is interesting in its own
right. Under mild boundedness hypotheses this result asserts that if a page
of a spectral sequence has projective entries then we can obtain from it a
projective resolution of its limit.

Two additional results occupy the last two sections: In Sect. 9 we give
an explicit minimal S-free presentation for the maximal Cohen-Macaulay R-
modules HomR(Ma,Mb) in terms of certain minors in X, and in Sect. 10 we
compute (in characteristic zero) the shape of the minimal graded free resolu-
tion of the graded simples of E.

In characteristic zero we know how to generalize most of our results to ar-
bitrary determinantal varieties. This will be covered in a sequel to the current
paper. The present paper is largely characteristic-free.
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2 Notation

Symbol Meaning
K a commutative base ring, most often a field
F,G projective K-modules of finite ranks m ≤ n∧a

F , Fa indicated exterior power of F

|F | determinant of F ,
∧rankF

F

S
b = Symb

K symmetric power
H HomK(G,F )

S S(H ∨), a polynomial algebra over K

−∨ dual over K or S, as context implies
A, K−(PA) abelian category with enough projectives and the homotopy

category of its projectives
G, F free S-modules induced from G and F

φ : G → F the generic S-linear map
X = (xij ) generic (m × n)-matrix of local coordinates on SpecS

R the quotient of S determined by the maximal minors of X

P = P(F ∨) K-projective space on the dual of F

π : P → K structure morphism
Y P ×SpecK H , with projections p : Y → P, q : Y → H

Z the incidence variety desingularizing SpecR, with inclusion
j : Z → Y

coh and Qch categories of coherent and quasi-coherent sheaves
Db

f bounded derived category of complexes with finite homology
K(idF ) affine tautological Koszul complex over idF

K projective tautological Koszul complex
Fb

a HomK(Fb,Fa) = Fa ⊗ F ∨
b

� = �P/K cotangent bundle on P over K

�a = ∧a
OP

� OP-module of degree-a differential forms
U = �(1) the tautological subbundle of rank m − 1 in π∗F
E = U ∗ the tautological quotient bundle of rank m − 1 of π∗F ∨

K>a , K≤a certain (shifted) truncations of K

Mb
a(−c) H omP(�b−1(b),�a−1(a))(−c)

Ta and T p′∗(�a−1(a)) and
⊕

a Ta

Ma and M cok(
∧a

φ) and
⊕

a Ma

E EndR(M)

Q Beı̆linson quiver on F

B path algebra of Q
Q̃ doubled Beı̆linson quiver on F and G

C quiverized Clifford algebra, path algebra of Q̃
Q∞ and C∞ infinite doubled Beı̆linson quiver and its path algebra
Cliff(q) Clifford algebra on the quadratic form q
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rep(�) abelian category of finite-dimensional representations of �

R, R̃ certain representations of Q and Q̃
Lα Schur module corresponding to the partition α

Z
j

p′

q ′ Y = H × P

p

q

P = P(F ∨)
π

SpecK

SpecR H = HomK(G,F )

3 Direct images of H om between bundles of differential forms

In Sects. 3 through 5 we prove the technical results needed for the proofs of
the theorems stated in the Introduction. At first reading the reader may wish to
go directly to Sect. 6 (after a pit stop in Sects. 5.1–5.2 to pick up the notation)
where the applications start of the results obtained here.

The aim of the present section is to determine the higher direct images
of the twisted bundles of homomorphisms between the modules of relative
differential forms on a projective bundle. The result is surely not new; it
contains, for example, Bott’s formula for the twists of the differential forms
themselves and the fact, first exploited by Beı̆linson in [1], that the direct sum⊕

i �
i
P/K

(i) is a tilting bundle with its endomorphism ring isomorphic to a
triangular version of the exterior algebra.

Not being aware of a complete, concise and explicit treatment of this gen-
eral case in the literature, although it is certainly contained in the even more
general treatment in [24], as well as to be able to use the ingredients of the
proof later on, we recall here the argument that relies entirely on properties of
the tautological Koszul complex, with the only challenge to keep the com-
binatorics at bay. To this end we first introduce compact notation we use
throughout and then embark upon the actual computation after stating the
result as Theorem 3.9.

3.1 Notation

We fix in this section a commutative base ring K and a projective K-module
F of constant finite rank m > 0 in the sense that the K-module

∧m
KF is

invertible and faithful, equivalently, locally free of rank one.
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The considerations to come will involve various multilinear operations on
F and we choose abbreviated notation as follows.

• Unadorned tensor products are understood over K .
• M∨ denotes the K-dual of the K-module M .
• Fa = ∧a

KF represents the indicated exterior power of F over K . It is a
finite projective K-module, of constant rank

(
m
a

)
, non-zero for 0 ≤ a ≤ m.

The resulting abbreviation F ∨
a is unambiguous, as

∧a
(F ∨) ∼= (

∧a
F )∨

via a canonical and natural isomorphism of K-modules; see [16, XIX,
Prop. 1.5].

• Fb
a = HomK(Fb,Fa) ∼= Fa ⊗ F ∨

b . The lower index thus indicates the co-
variant, the upper one the contravariant argument in the space of K-linear
maps involved.

• |F | = Fm denotes the determinant of F , a projective K-module of (con-
stant) rank 1 by assumption. Again, |F |∨ ∼= |F ∨| canonically.

• S
b = Symb

K(F ) represents the indicated symmetric power of F over K .
It is again a projective K-module, of constant rank

(
m−1+b

b

)
, non-zero for

b ≥ 0. We write S = ⊕
b≥0 S

b = SymK F for the symmetric algebra on F

over K , endowed with its canonical grading that places S
b into (internal)

degree b.

Complexes will be graded cohomologically, so that the differential increments
the complex degree by 1. Recall that the (simple) translation of a complex,
denoted [1], then shifts a complex one place against the direction of the dif-
ferential and changes the sign of said differential.

3.2 The tautological Koszul complex

Exterior and symmetric algebra on F over K combine to define the
(affine) tautological Koszul complex K(idF ) over the identity map on
F ; see [6, 9.3 AX.151]. That Koszul complex often plays a dominant
role in (co-)homological considerations, and this instance is no excep-
tion.

Recall that the underlying bigraded SymKF -module of K(idF ) is∧
K(F [1])⊗SymKF and that the differential can be described in a coordina-

te-free manner through the comultiplication on the exterior algebra and the
multiplication on the symmetric algebra. Namely, denote 	a−1,1 : Fa →
Fa−1 ⊗ F the indicated bihomogeneous component of the comultiplication
defined by applying the exterior algebra functor to 	 : F → F ⊕ F fol-
lowed by the canonical isomorphism

∧
K(F ⊕ F) ∼= ∧

KF ⊗ ∧
KF . With

μ1,b : F ⊗S
b = S

1 ⊗S
b → S

b+1 the indicated bihomogeneous component of
the multiplication on the symmetric algebra, the differential ∂ is then simply
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the direct sum of its bihomogeneous components

∂b
a : Fa ⊗ S

b −	a−1,1⊗S
b−−−−−−→ Fa−1 ⊗ F ⊗ S

b −Fa−1⊗μ1,b

−−−−−−→ Fa−1 ⊗ Sb+1.

We continually use the following basic fact.

Proposition 3.3 (cf. [6, 9.3 Prop. 3]) The homogeneous strand of the Koszul
complex K(idF ) in internal degree a ∈ Z is a complex of finite projective K-
modules of constant rank

0 → |F | ⊗ S
a−m → Fm−1 ⊗ S

a−m+1 → ·· · → F ⊗ S
a−1 → S

a → 0.

(3.3.1)

It is supported on the integral interval [−min{a,m},0] and, unless a = 0, it
is exact, thus, even split exact as its terms are finite projective K-modules. If
a = 0, the complex reduces to the single copy of K ∼= S

0 placed in (cohomo-
logical) degree 0. �

3.4 The projective tautological Koszul complex

Now we turn to P = P(F ∨) = ProjK(SymK F), the projective space of linear
forms on F over K with structure morphism π : P → SpecK and its canoni-
cal very ample line bundle OP(1). If M is any K-module, we write M ⊗ OP

for the induced OP-module π∗M , and even M(i) = M ⊗ OP(i) for any inte-
ger i.

The OP-linear Euler derivation e : F ⊗ OP(−1) → OP corresponds to the
identity on F under the standard identifications

HomP(F ⊗ OP(−1), OP) ∼= HomP(π∗F, OP(1))

∼= HomK(F,π∗OP(1))

∼= HomK(F,F )

It gives rise to the (projective) tautological Koszul complex of OP-modules

K ≡ 0 → Fm(−m) → ·· · → F(−1) → OP → 0, (3.4.1)

where we place OP in (cohomological) degree zero, so that the complex is
supported again on the interval [−m,0]. This complex on P is the sheafifi-
cation of the affine tautological Koszul complex K(idF ) in Sect. 3.2, and,
conversely, if one applies π∗ to K(a) for some integer a, the result is
the homogeneous strand of the affine Koszul complex displayed in (3.3.1)
above.
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3.5 Differential forms

The Koszul complex K on P is exact and decomposes into short exact se-
quences

0 → �a → Fa(−a) → �a−1 → 0 (3.5.1)

where �a = ∧a
P
�1

P/K
denotes the OP-module of relative Kähler differential

forms on P of degree a, equivalently, the locally free sheaf of sections of the
ath exterior power of the cotangent bundle on P relative to K .

Recall as well that the locally free OP-module �m−1 ∼= Fm(−m) =
|F |(−m) of rank 1 represents ωP/K , the relative dualizing OP-module for
the projective morphism π .

3.6 The canonical (co-)resolutions of the differential forms

Twisting, truncating, and translating the Koszul complex (3.4.1) appropriately
provides locally free resolutions and coresolutions of the OP-modules �a(a′),
for any integers a, a′. These (co-)resolutions are represented by the following
quasi-isomorphisms of complexes, where we view �a(a′)[0] as a complex
concentrated in degree zero,

�a(a′)[0]
ia �

(
0 Fa(a

′−a) · · · F(a′−1) OP(a′) 0
)[−a]

(3.6.1)

and

(
0 |F |(a′−m) · · · Fa+1(a

′−a−1)

pa �

0
)[−a − 1]

�a(a′)[0]
(3.6.2)

Denote K�a(a
′) the locally free coresolution displayed in (3.6.1). It is

thus the (cochain) complex concentrated on the interval [0, a] with non-zero
terms

K�a(a
′)i = Fa−i (a

′ − a + i)
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for i = 0, . . . , a, and with H0(K�a(a
′)) ∼= �a(a′) the only possibly non-

vanishing cohomology OP-module.
Analogously the locally free resolution displayed in (3.6.2) is denoted

K>a(a
′). It is a (chain) complex concentrated on the interval [a − m + 1,0]

with terms

K>a(a
′)j = Fa+1−j (a

′ − a + j − 1)

for j = a − m + 1, . . . ,0, and with H0(K>a(a
′)) ∼= �a(a′) the only possibly

non-vanishing cohomology.
The proper signs of the differentials in these (co-)resolutions are uniquely

determined by the requirement that the mapping cone over the composition

iapa : K>a(a
′) −pa−→ �a(a′)[0] −ia−→ K�a(a

′)

returns exactly K(a′)[−a].
3.7 The higher direct images

The (co-)resolutions displayed in (3.6.1) and (3.6.2) combine to produce, for
any integers a, b, and c, four ways to represent the locally free OP-modules1

Mb
a(−c) = H omOP

(�b−1(b),�a−1(a))(−c)

∼= H omOP
(�b−1(b − 1),�a−1(a − 1))(−c)

as sole cohomology sheaf in total degree zero of a bicomplex2 of locally
free OP-modules, each supported in exactly one of the four quadrants in the
plane, representing a suitably twisted “cut-out” of the endomorphism com-
plex EndOP

(K) of the projective tautological Koszul complex. Choosing the
appropriate bicomplex, the total derived direct image of Mb

a(−c) can be ob-
tained as the cohomology of just the (dual of the) direct image of that bicom-
plex.

The work is reduced considerably in view of the following.

Lemma 3.8 For any integers a, b, and c, there are canonical isomorphisms
of locally free OP-modules

Mb
a(−c) ∼= Mm+1−a

m+1−b(−c) (3.8.1)

and

H omOP

(
Mb

a(−c),�m−1) ∼= Ma
b(c − m) ⊗OP

π∗|F |. (3.8.2)

1The curious looking notation will be justified later.
2bicomplex = total complex obtained from the corresponding (naive) double complex.
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Proof The non-degenerate pairing resulting from exterior multiplication

− ∧ −: �a−1(a) ⊗OP
�m−a(−a) → �m−1 (3.8.3)

induces for each integer a a natural isomorphism

�m−a(m + 1 − a) −∼=−→ H omOP
(�a−1(a),�m−1(m + 1)) (3.8.4)

whence applying the contravariant functor H omOP
(−,�m−1(m+1)) to each

argument returns an isomorphism

Mb
a(−c) = H omOP

(�b−1(b),�a−1(a))(−c)

∼=

Mm+1−a
m+1−b(−c) = H omOP

(�m−a(m + 1 − a),�m−b(m + 1 − b))(−c)

as desired. Similarly one obtains from the definition of Mb
a(−c) and adjunc-

tion the first three isomorphisms in

H omOP

(
Mb

a(−c),�m−1)

∼= H omOP
(H omOP

(�b−1(b),�a−1(a)),�m−1)(c)

∼= H omOP
(�a−1(a) ⊗OP

H omOP
(�b−1(b), OP),�m−1)(c)

∼= H omOP
(�a−1(a),�b−1(b) ⊗OP

�m−1)(c)

∼= H omOP
(�a−1(a),�b−1(b))(c − m) ⊗OP

π∗|F |
= Ma

b(c − m) ⊗OP
π∗|F |

while the fourth one uses the isomorphism �m−1 ∼= |F |(−m) recalled in
Sect. 3.5, and the final equality substitutes the definition of Ma

b . �

After these preliminary considerations we turn now to the determina-
tion of the higher direct images of Mb

a(−c) with respect to the projective
morphism π : P → SpecK . The result is as follows, and the remainder of
this section contains its detailed proof, followed by some immediate conse-
quences.

Theorem 3.9 For any integers a, b, c, and each ν ∈ Z, the higher direct im-
age Rνπ∗(Mb

a(−c)) of the locally free OP-module

Mb
a(−c) = H omOP

(�b−1(b),�a−1(a))(−c)
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is a finite projective K-module. In particular, the higher direct images
Rνπ∗(Mb

a(−c)) are non-zero for at most one value of ν. In case a + b ≥
m + 1, the precise situation is as follows.

(1) For c < 0, only the direct image R0π∗(Mb
a(−c)) = π∗(Mb

a(−c)) itself
is non-zero.

(2) For 0 ≤ c < a − b, for m − b < c < a, and for a + m − b < c ≤ m, all
(higher) direct images vanish.

(3) For max{0, a − b} ≤ c ≤ m − b, the only non-vanishing higher direct
image is

Rcπ∗
(

Mb
a(−c)

) ∼= F ∨
c+b−a.

(4) For a ≤ c ≤ min{a + m − b,m}, the only non-vanishing higher direct
image is

Rc−1π∗
(

Mb
a(−c)

) ∼= F ∨
c+b−a.

(5) For m < c, only the highest direct image is non-zero, and it satisfies

Rm−1π∗
(

Mb
a(−c)

) ∼= π∗
(

Ma
b(c − m)

)∨ ⊗ |F |∨.

The case a + b < m + 1 reduces to the previous one in light of Lemma 3.8.

Remark 3.10 As the target of π is affine and each Mb
a(−c) is locally free,

the usual local-global spectral sequence yields natural isomorphisms of K-
modules

Rνπ∗
(

Mb
a(−c)

) ∼= ExtνOP
(�b−1(b′),�a−1(a′))

for any integers ν and a′, b′ with b′ − a′ = c + b − a.
On the other hand, as the calculation of higher direct images is local in the

base, the reader may as well replace SpecK in Theorem 3.9 by an arbitrary
scheme with a locally free sheaf F of constant rank m on it to obtain the
analogous result for the higher direct images relative to a projective bundle
over an arbitrary base scheme.

Remark 3.11 The results of the theorem are invariant under the involution
(a, b, c) ↔ (m+1−b,m+1−a, c) in view of Lemma 3.8. Note further that
either the first or the last interval in Theorem 3.9 (3) is empty, depending on
whether or not a ≤ b.

Proof of Theorem 3.9 In view of the foregoing remark, we may assume with-
out loss of generality that a + b ≥ m + 1. Using Grothendieck-Serre duality
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for the projective morphism π we show next that it suffices to establish the
claims for c ≤ 1

2(a − b + m).
Namely, assume we have shown that in the indicated range the higher direct

images are finite projective K-modules and that at most one higher direct
image Rνπ∗(Mb

a(−c)) is not zero for given a, b, c. Using

Rνπ∗(�m−1) ∼=
{

0 for ν 	= m − 1

K for ν = m − 1

the duality theorem for projective morphisms yields that the natural pairing
of complexes of K-modules

Rπ∗
(

Mb
a(−c)

) ⊗L Rπ∗
(
H omOP

(
Mb

a(−c),�m−1))

→ Rπ∗(�m−1) � K[1 − m]
is non-degenerate. The isomorphism (3.8.2) together with the projection for-
mula Rπ∗(− ⊗OP

π∗|F |) ∼= Rπ∗(−) ⊗ |F | let us rewrite this pairing as

Rπ∗
(

Mb
a(−c)

) ⊗L Rπ∗
(

Ma
b(c − m)

) ⊗L |F | → K[1 − m].
Accordingly, if the total direct image is represented by a single finite

projective K-module in cohomological degree d , so that Rπ∗(Mb
a(−c)) �

Rdπ∗Mb
a(−c)[−d], we read off

Rνπ∗
(

Ma
b(c − m)

) ∼=
{

0 if ν 	= m − 1 − d

(Rdπ∗Mb
a(−c))∨ ⊗ |F |∨ if ν = m − 1 − d.

Under the involution (a, b, c) �→ (a′, b′, c′) = (b, a,m − c), the range

a + b ≥ m + 1, max{0, a − b} ≤ c ≤ m − b

is interchanged with the range

a′ + b′ ≥ m + 1, a′ ≤ c′ ≤ min{a′ − b′ + m,m}.
Now assuming that the conclusion of (3) holds, one finds on the one hand

(
Rcπ∗

(
Mb

a(−c)
))∨ ⊗ |F |∨ ∼= Rm−1−cπ∗

(
Ma

b(c − m)
)

∼= Rc′−1π∗
(

Mb′
a′(−c′)

)

and on the other
(
F ∨

c+b−a

)∨ ⊗ |F |∨ ∼= Fa′−b′+m−c′ ⊗ |F |∨ ∼= F ∨
b′−a′+c′
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with the last isomorphism due to the pairing induced by exterior multiplica-
tion among the exterior powers of F .

In this way, (3) and (4) are seen to be dual statements. Similarly, the state-
ments in (1) and (5) are dual to each other, while in (2) the statements for
the first and third interval are interchanged, the statement for the middle one
being selfdual.

It thus remains to prove the theorem for the range a + b ≥ m + 1 and
c ≤ 1

2(a − b + m). The outline of the argument here is as follows.
Depending on whether c ≤ m − b or m − b < c, we choose a different

bicomplex to represent Mb
a(−c) in the derived category of P. The choice

is made so that the individual terms of the representing bicomplex are π∗-
acyclic, that is, the direct image itself will be the only non-vanishing (higher)
direct image, and the bicomplex resulting from applying π∗ will represent
Rπ∗(Mb

a(−c)) as a complex of finite projective K-modules. We then analyze
this bicomplex along its “rows”. Each of these is the tensor product over K of
a finite projective K-module with a (subcomplex of a) homogeneous strand
of the affine tautological Koszul complex K(idF ), thus, is a complex with
easily determined cohomology. It then remains to assemble the information
so gained.

Now we turn to the details, where we freely use the well known results on
the higher direct images of the locally free OP-modules OP(i), i ∈ Z; see [12,
Prop. 2.1.12] for the general case treated here.

3.12

With a + b ≥ m + 1, assume first c ≤ m − b. Choosing for each of �a−1(a)

and �b−1(b) the appropriate coresolution (3.6.1), one can represent Mb
a(−c)

by the following bicomplex with non-zero terms concentrated in the fourth
quadrant:

E
i,−j
+− = H omOP

(K�b−1(b),K�a−1(a))i,−j (−c)

∼= Fa−1−i (i + 1) ⊗ F ∨
b−1−j (−1 − j)(−c)

∼= F
b−1−j

a−1−i (i − j − c) for i, j ≥ 0.

This bicomplex evidently has the following properties:

(a) Each term E
i,−j
+− is the twist by a power of the distinguished very ample

line bundle on P of an OP-module induced from a finite projective K-
module;

(b) The twist occurring in E
i,−j
+− depends only upon the total degree i − j ;

(c) The bicomplex is supported on the rectangle [0, a − 1] × [−b + 1,0] in
the (i, j)-plane.
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(d) The twists occurring in non-zero terms range over the integers from 1 −
b − c to a − 1 − c, an integral interval of length a + b − 2.

(e) As c ≤ m − b and a + b ≥ m + 1 by assumption, the possible twists
?(t) occurring in non-zero terms of E

i,−j
+− satisfy t ≥ 1 − m, whence

for each such term the higher direct images vanish, Rνπ∗(Ei,−j
+− ) = 0

for ν 	= 0.

Property (e) implies in particular that the total higher direct image of
Mb

a(−c) is represented in the derived category of K by π∗ of this bicom-
plex,

Rπ∗
(

Mb
a(−c)

) � π∗E
•,•
+−.

3.13

The cohomology of π∗E
•,•
+− is now readily determined by looking first at the

“rows” of the bicomplex. Fixing j ∈ [0, b− 1], the corresponding (row) com-
plex π∗E

•,−j
+− is concentrated on the line segment [0, a − 1] × {−j} in the

(i, j)-plane and has the form

(0 → Fa−1 ⊗ S
−j−c → Fa−2 ⊗ S

1−j−c → ·· · → S
a−1−j−c → 0)

⊗ F ∨
b−1−j [j ]. (3.13.1)

This complex is, up to the signs of the differentials, the translation by [j ]
of the tensor product over K of F ∨

b−1−j with a subcomplex of the homo-
geneous strand in internal degree a − 1 − j − c in the affine tautologi-
cal Koszul complex K(idF ) recalled in Sect. 3.4. That strand of K(idF )

is exact except possibly at its ends. More precisely, the situation is as fol-
lows.

Lemma 3.14 For (i, j) ∈ [0, a − 1]× [0, b− 1] and c ≤ m−b, the cohomol-
ogy Hi,−j (π∗E

•,−j
+− ) of the row complex just displayed in (3.13.1) is non-zero

only if

(1) (i,−j) = (0,−j) with −j > c, and then

H 0,−j
(
π∗E

•,−j
+−

) ∼= π∗(�a−1(−j − c − 1)) ⊗ F ∨
b−1−j

∼= ker
(
Fa−1 ⊗ S

−j−c → Fa−2 ⊗ S
1−j−c

) ⊗ F ∨
b−1−j

∼= cok
(
Fa+1 ⊗ S

−2−j−c → Fa ⊗ S
−1−j−c

) ⊗ F ∨
b−1−j

or
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(2) (i,−j) = (a − 1, c − a + 1), in which case

Ha−1,c−a+1(π∗E
•,−j
+−

) ∼= F ∨
b−1−j

∼= F ∨
c+b−a.

In either case, the cohomology is a finite projective K-module.

3.15 Visualization

The reader might find it helpful to contemplate the following visualizations
in the (i, j)-plane, where the place with non-zero homology with respect to
the horizontal differential is marked x, those places with π∗E

i,j
+− 	= 0 but no

horizontal homology are marked by •, and the symbol ◦ refers to entries
where π∗E

i,j
+− is zero.

We begin with the simplest case, when 0 ≤ c ≤ m−b, whence in particular
0 ≤ c ≤ a − 1. We get then the following picture:

π∗E
•,•
+− ≡

0 ◦ · · · ◦ • • · · · • •
◦ · · · ◦ ◦ • · · · • •
...

. . .
...

...
...

. . .
...

...

◦ · · · ◦ ◦ ◦ · · · • •
c−a+1 ◦ · · · ◦ ◦ ◦ · · · ◦ x

◦ · · · ◦ ◦ ◦ · · · ◦ ◦
...

. . .
...

...
...

. . .
...

...

1−b ◦ · · · ◦ ◦ ◦ · · · ◦ ◦
0 c a−1

(3.15.1)

In other words, there is at most one non-vanishing cohomology group oc-
curring in those rows, whence the entire bicomplex equally only carries
this cohomology. Note that cohomology indeed appears if, and only if,
max{0, a − b} ≤ c.

In summary, we read off the following result that settles the claims in The-
orem 3.9 for c in the interval [0,m − b].

Proposition 3.16 For a + b ≥ m + 1 and 0 ≤ c < a − b, the higher direct
images of Mb

a(−c) all vanish, while for max{0, a − b} ≤ c ≤ m − b the only
non-vanishing one is the finite projective K-module

Rcπ∗
(

Mb
a(−c)

) ∼= F ∨
c+b−a.
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3.17

In case c < 0, the corresponding diagram has the form

π∗E
•,•
+− ≡

0 x • • · · · • • •
...

...
...

. . .
...

...
...

c x • • · · · • • •
◦ • • · · · • • •
◦ ◦ • · · · • • •
...

...
...

. . .
...

...
...

◦ ◦ ◦ · · · • • •
◦ ◦ ◦ · · · ◦ • •

c−a+1 ◦ ◦ ◦ · · · ◦ ◦ x
◦ ◦ ◦ · · · ◦ ◦ ◦
...

...
...

. . .
...

...
...

1−b ◦ ◦ ◦ · · · ◦ ◦ ◦
0 a−1

with non-zero cohomology along the rows thus occurring only for total de-
grees in the interval [max{1 − b, c},0].

Now Rν M = 0 for ν < 0 and any OP-module M, whence the bicom-
plex π∗E

•,•
+− that represents Rπ∗(Mb

a(−c)) only admits cohomology in non-
negative degrees. Combining these two facts, there can be at most a single
degree, namely 0, in which there is non-vanishing cohomology. This amounts
to the following result.

Proposition 3.18 For a + b ≥ m + 1 and c < 0, the higher direct images of
Mb

a(−c) vanish except possibly3 for the direct image π∗(Mb
a(−c)) itself, a

finite projective K-module of constant rank.

Proof We already explained before stating the proposition why the higher
direct images necessarily vanish in degrees different from zero. The final
statement follows then from the universality of the construction: the deter-
mination of the higher direct images of Mb

a(−c) as described is compatible
with base change in the base SpecK , and the fact that the higher direct im-
ages are concentrated in degree zero is independent of that base. It follows that
π∗(Mb

a(−c)) is K-flat, thus finite projective over K as it is finitely presented.
Its rank can be computed through the Euler characteristic of the ranks of the
terms of the bicomplex, whence the result is still constant across SpecK . �

3We will see below in Remark 5.4 that they are indeed non-zero!
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At this stage, we have established the claims in Theorem 3.9 for a + b ≥
m + 1 and c ≤ m − b.

3.19

For further use we give in Lemma 3.20 below a concrete interpretation of the
isomorphism

Rcπ∗
(

Mb
a(−c)

) ∼= F ∨
c+b−a (3.19.1)

for a + b ≥ m − 1 and 0 ≤ c ≤ m − b (see Proposition 3.16).
It will be convenient to regard K = ∧

(F (−1)[1]) as a OP-linear differ-
entially graded algebra with differential d obtained by extending the Euler
map F(−1) → OP. For u, v ∈ Z we regard K(u)[v] as a OP-linear K-DG-
bimodule.

Let λ ∈ F ∨. By extending the linear map λ : K1 = F(−1) → OP(−1) =
K(−1)0 we obtain a derivation K → K(−1)[1] which we denote by ∂λ. The
commutator d∂λ + ∂λd is a derivation and since it is zero on generators it
follows d∂λ + ∂λd = 0. A similar argument shows ∂λ∂λ′ + ∂λ′∂λ = 0.

If λ1 ∧ · · · ∧ λp ∈ F ∨
p then we obtain a corresponding differential operator

∂λ1 · · · ∂λp : K → K(−p)[p] commuting with d . This yields a map of com-
plexes

F ∨
p ⊗ K → K(−p)[p].

Put p = b + c − a. We obtain a map

F ∨
b+c−a ⊗ K(b)[−b + 1] → K(a − c)[c − a + 1].

Truncating in homological degree 0 and taking into account the shift incor-
porated into the definition of K≤b+1 (see Sect. 3.6) we obtain a map

F ∨
b+c−a ⊗ K≤b−1(b) → K≤−1+a−c(a − c) ⊂ K≤a−1(a)(−c)[c]. (3.19.2)

Lemma 3.20 The map

F ∨
b+c−a → HomOP

(K≤b−1(b),K≤a−1(a)(−c))[c] = Rπ∗
(

Mb
a(−c)

)[c]
(3.20.1)

obtained from (3.19.2) is a quasi-isomorphism.

Proof Filtering the double complex HomOP
(K≤b−1(b),K≤a−1(a))(−c) by

rows as before, it is sufficient to show that the induced map to the only row
carrying non-trivial cohomology is a quasi-isomorphism. Looking at the pic-
ture (3.15.1) we see that we have to show that
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F ∨
b+c−a → HomOP

(K≤b−1(b)a−c−1,K≤a−1(a)a−1)(−c)

= π∗
(
F ∨

b−1−(a−c−1)(−1 − (a − c − 1)) ⊗ OP(1 + (a − 1))(−c)
)

= π∗
(
F ∨

b+c−a ⊗ OP

)

= F ∨
b+c−a

is an isomorphism. This is an easy verification. �

3.21

Now we turn to the higher direct images of Mb
a(−c) in the range m−b < c <

a ≤ m, still under the assumption that a + b ≥ m + 1. To this end, we choose
the locally free coresolution for �a−1(a) as in (3.6.1), but the locally free
resolution for �b−1(b) as in (3.6.2), to represent Mb

a(−c) by the resulting
bicomplex concentrated in the first quadrant. It has the terms

E
i,j
++ = H omOP

(K>b−1(b),K�a−1(a))i,j (−c)

∼= Fa−1−i (i + 1) ⊗ F ∨
b+j (j)(−c)

∼= F
b+j

a−1−i (i + j + 1 − c) for i, j ≥ 0.

Take note of the following properties, analogous to the properties (a) through
(e) in Sect. 3.12 above.

(a) Each term E
i,j
++ is the twist of a power of the canonical line bundle on P

with an OP-module induced from a finite projective K-module.
(b) The twist occurring in E

i,j
++ only depends upon the total degree i + j .

(c) The bicomplex is supported on the rectangle [0, a −1]× [0,m−b] in the
(i, j)-plane.

(d) The twists occurring in non-zero terms range over the integers from 1 − c

to a − b − c + m, an integral interval of length a − b + m − 1.
(e) In view of the preceding point, and as 0 ≤ m − b < c ≤ m by our current

assumption, the possible twists ?(t) occurring in non-zero terms of E
i,j
++

satisfy a > t ≥ 1−m and the lower bound shows again that for each such
term the higher direct images vanish, Rνπ∗(Ei,j

++) = 0 for ν 	= 0.

As before, property (e) implies in particular that the total derived direct
image of Mb

a(−c) is represented by the direct image under π∗ of this bicom-
plex,

Rπ∗Mb
a(−c) � π∗E

•,•
++

and we will determine its cohomology once again by looking first at the cor-
responding “row” complexes. Fixing therefore j ∈ [0,m − b], the complex



R.-O. Buchweitz et al.

π∗E
•,j
++ is concentrated on the line segment [c − j − 1, a − 1] × {j} in the

(i, j)-plane and has the form

(0 → Fa+j−c → Fa+j−c−1 ⊗ S
1 → ·· · → S

a+j−c → 0) ⊗ F ∨
b+j [−j ].

Up to the signs of the differentials, this is the translation by [−j ] of the tensor
product over K of F ∨

b+j with the (entire!) homogeneous strand in internal
degree a + j − c in the affine tautological Koszul complex K(idF ) recalled
in Sect. 3.4.

Note that a −m ≤ a +j −c ≤ a −1 by the assumptions c ∈ [m−b+1,m]
and j ∈ [0,m − b], whence either

(i) a + j − c < 0, and this complex has no non-zero terms, or
(ii) a + j − c = 0, and the strand of the affine Koszul complex has coho-

mology equal to its only non-zero term, isomorphic to K , in bidegree
(a − 1, c − a), thus total degree c − 1, or

(iii) 0 < a + j − c ≤ a − 1, and the strand of the Koszul complex is exact.

Depicting the situation again, for m − b < c < a the resulting diagram is
of the form

π∗E
•,•
++ ≡

m−b ◦ · · · ◦ • • · · · • · · · •
◦ · · · ◦ ◦ • · · · • · · · •
...

. . .
...

...
...

. . .
...

. . .
...

0 ◦ · · · ◦ ◦ ◦ · · · • · · · •
0 c′ a−1

where we have set c′ = c − (m − b + 1), satisfying 0 ≤ c′ < a + b − m − 1 ≤
a − 1. In other words, all the rows here are already exact, so there are no non-
zero higher direct images. We record this as the following result that covers
the claims in Theorem 3.9 for the range m − b < c < a.

Proposition 3.22 For a + b ≥ m + 1 and m − b < c < a, all higher direct
images of Mb

a(−c) vanish, Rνπ∗(Mb
a(−c)) = 0 for each integer ν.

The proof of Theorem 3.9 is now complete, in view of the duality consid-
erations at the beginning. �

For the benefit of the reader and for further use below, we visualize the
results in Theorem 3.9 as follows.

3.23

For a + b ≥ m + 1 and m ≥ a ≥ b ≥ 1, depicting by • the nonzero terms
Rνπ∗(Mb

a(−c)), by ◦ or just empty spaces the vanishing ones, and setting
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m′ = b − m,a′ = b − a for formatting purposes, results in the following dia-
gram in the (−c, ν)-plane

ν

m−1 · · · •
. . .

a−1 • ◦
. . .

◦
m−b •

. . .

a−b •
◦

. . .

0 ◦ • · · ·
−c −m −a m′ a′ 0 −c>0

while the corresponding diagram for a + b ≥ m + 1 and m ≥ b ≥ a ≥ 1 is
obtained from the above through a halfturn. It looks as follows, where we
have set this time m′ = b − a − m and b′ = b − m,

ν

m−1 · · · • ◦
. . .

◦
m−1−b+a •

. . .

a−1 •
◦

. . .

m−b ◦ •
. . .

0 • · · ·
−c −m m′ −a b′ 0 −c>0

Theorem 3.9 can also be reformulated in the following terms, which are
the most useful for the application we have in mind.
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Corollary 3.24 With notations as in Sect. 3.9, for arbitrary integers a, b, c, d ,
the higher direct image Rdπ∗(Mb

a(−c)) is not zero only in the following
cases:

(1) If d − c > 0, then d = 0 and, necessarily, c < 0.
(2) If d − c = 0, then c + b ∈ [max{a, b},min{m,a + b − 1}].
(3) If d − c = −1, then c − a ∈ [max{0,m− a − b − 1},min{m− b,m− a}].
(4) If d − c < −1, then d = m − 1 and, necessarily, c > m.

Using Remark 3.10, for c = 0, Theorem 3.9 returns the following well
known fact, namely that the sequence OP(−1) ∼= �m−1(m−1), . . . ,�0(0) =
OP of locally free OP-modules “between OP(−1) and OP” is strongly excep-
tional in the sense of Bondal [4].

Corollary 3.25 In case c = 0, we have Mb+1
a+1

∼= H omOP
(�b(b),�a(a))

and Theorem 3.9 yields

ExtiOP
(�b(b),�a(a)) ∼=

{∧b−a
K F ∨ if i = 0 and b ≥ a, and

0 otherwise.

To end this section, we determine the ranks of the finite projective K-
modules occurring in Theorem 3.9. They can be easily determined in closed
form by means of the Hilbert-Serre, a.k.a. the Hirzebruch-Riemann-Roch
Theorem and the result is as follows.

Corollary 3.26 Let m ≥ a, b ≥ 1 be integers with a + b ≥ m + 1. Denote
rb
a (z) ∈ Q[z] the unique polynomial of degree at most m − 1 that at the inte-

gers in the interval [−m,0] takes on the values

rb
a (−c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ c < a − b,

(−1)c
(

m
c+b−a

)
for max{0, a − b} ≤ c ≤ m − b,

0 for m − b < c < a,

(−1)c−1
(

m
c+b−a

)
for a ≤ c ≤ min{a + m − b,m},

0 for a + m − b < c ≤ m.

The ranks of the higher direct images of Mb
a(−c) are then determined

uniquely through

∑

ν

(−1)ν rankK Rνπ∗
(

Mb
a(−c)

) = rb
a (c)

as for each triple a, b, c at most one term in the sum on the left is nonzero.
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4 Interlude: projective resolutions from sparse spectral sequences

In this section we record a “degeneracy result” that allows one to obtain
a projective resolution of a bicomplex from one of the associated spectral
sequences, provided the corresponding first page is “sparse” with projec-
tive terms. The result applies to bicomplexes in any abelian category A with
enough projectives, whence we assume here this setting.

4.1 Categorical notation

Let K− = K−(PA) denote the homotopy category of complexes of projec-
tives from A that are bounded in the direction of the differential, and, for an
arbitrary complex C over A, denote by K−/C the corresponding comma cat-
egory; see [18, II.6]. Its objects are thus homotopy classes of morphisms of
complexes ϕ : P → C with P ∈ K−, and its morphisms from ϕ : P → C

to ϕ′ : P ′ → C are those homotopy classes of morphisms of complexes
ψ : P → P ′, for which ϕ′ψ = ϕ in K−.

Recall that a morphism of complexes is a quasi-isomorphism if it induces
an isomorphism in cohomology. If C is any complex over A, then a projective
resolution of C is any quasi-isomorphism ϕ : P → C with source in K−. Such
a projective resolution, if it exists, is an object in K−/C, and in there it is
unique up to isomorphism.

4.2 Assumptions

Fix henceforth a bicomplex C = (Ci,j , d) supported on the upper half-
plane (i, j) ∈ Z × N and whose associated total (direct sum) complex ex-
ists in the given abelian category A. Equivalently, the (countable) direct sums
Cn = ⊕

i+j=n Ci,j exist in A for each integer n. As C is a bicomplex, the
differential of C decomposes as d = dh + dv , where

dh =
⊕

i,j

d
i,j
h , d

i,j
h : Ci,j−→Ci+1,j

dv =
⊕

i,j

di,j
v , di,j

v : Ci,j−→Ci,j+1

represent, respectively, the horizontal and vertical components.
Filtering the bicomplex according to column degree, the resulting spectral

sequence converges against the cohomology of C, as the bicomplex is sup-
ported on the upper half-plane, and it displays on its first page the vertical
cohomology groups. In short,

E
i,j

1 = Hi,j
v (C) = Hi,j (C, dv) =⇒ Hi+j (C).
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Below we will use the following basic fact.

Lemma 4.3 Let D = (D,d) be a complex whose cohomology objects Hn(D)

are projective in A for each integer n. Viewing the graded object H =⊕
n Hn(D)[−n] over A as a complex with zero differential, there exists a

quasi-isomorphism from it to D. In other words, the cohomology itself con-
stitutes a projective resolution of D.

Proof Indeed, let Z denote the complex of cycles, which sits naturally as
a subcomplex of D with zero differential. The natural epimorphism Z �
H of graded objects, or complexes with zero differentials, admits a section
H↪→Z, as the components of H are projective. The resulting composition
H↪→Z↪→D provides for the desired quasi-isomorphism. �

Now we can formulate the “degeneracy criterion”.

Proposition 4.4 With C as in Sect. 4.2, suppose that each of its vertical co-
homology groups E

i,j

1 is projective and assume further that there exist an
integer a and a strictly decreasing sequence of integers ia > ia−1 > · · · such
that E

i,j

1 = 0 for

• i > ia and all j , and for
• i + j 	= n when in−1 < i ≤ in.

In this case,

(1) for each integer n, the direct sum P n = ⊕
i+j=n E

i,j

1 exists and is pro-
jective in A; note that P n = 0 if n > a;

(2) there exist morphisms {∂n : P n → P n+1}n∈Z with ∂n+1∂n = 0, whence
P = (P n, ∂n) constitutes a complex in K−;

(3) there exists a quasi-isomorphism ϕ = {ϕn}n∈Z : P → C.

In particular, ϕ : P → C constitutes a projective resolution of C.

Proof Consider the (naïve) ascending and exhaustive filtration

Fa+1 = (Ci,j )i>ia,j · · · Fn = (Ci,j )i>in−1,j

· · · C

on the bicomplex C. Each bicomplex Fν , for ν ≤ a + 1, satisfies the same
hypotheses as those assumed for C, and we first establish the theorem for
these bicomplexes by descending induction. The proof will then be finished
by passing to the limit.
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The bicomplex Fa+1 is exact: indeed, its vertical cohomology E
i,j

1 (Fa+1)

vanishes by assumption, whence the (total) cohomology of Fa+1 is equally 0
as the associated spectral sequence, essentially concentrated in the first quad-
rant, converges. Accordingly, for a′ ≥ a, we get P a′ = ⊕

i+j=a′ E
i,j

1 = 0, and

so ∂a′ = 0, with ϕa+1 : 0 → Fa+1 a quasi-isomorphism. This establishes the
initial step of the induction.

Now assume that for some integer ν ≤ a,

(i) the terms P ν′ = ⊕
i+j=ν′ E

i,j

1 exist and are projective in A for ν′ > ν,
(ii) we have constructed a complex

P
ν+1 ≡ (0 P ν+1

∂ν+1

P ν+2 · · · P a
∂a

0)

(iii) and a quasi-isomorphism ϕν+1 : P
ν+1 → Fν+1.

By definition of the filtration, the quotient Fν/Fν+1 is a bicomplex concen-
trated on the vertical strip [iν−1 + 1, iν] × N. On this strip of finite width,
the vertical cohomology is by hypothesis concentrated in total degree ν, and
so involves only finitely many terms. Accordingly, P ν = ⊕

i+j=ν E
i,j

1
∼=

⊕iν
i=iν−1+1 E

i,ν−i
1 is a finite direct sum of projectives, thus, exists and is it-

self projective in A.
Moreover, P ν[−ν] represents the (total) cohomology of Fν/Fν+1, as the

spectral sequence E
i,j

1 (Fν/Fν+1) =⇒ Hi+j (Fν/Fν+1) collapses on its first
page, due to the lack of cohomology outside the diagonal i + j = ν. As
P ν is projective, it follows from Lemma 4.3 that there exists then a quasi-

isomorphism of complexes χν : P ν[−ν] −∼=−→ Fν/Fν+1 from the complex
with P ν as sole possibly non-zero term in degree ν to Fν/Fν+1; it consti-
tutes a projective resolution of Fν/Fν+1.

The semi-split exact sequence of complexes

0 → Fν+1 → Fν → Fν/Fν+1 → 0

defines an exact triangle in the derived category D(A) that together with the
already constructed quasi-isomorphisms accounts for the solid arrows in

P
ν+1

�ϕν+1

cone(δν)

�ϕν

P ν[−ν]
χν�

δν

P
ν+1[1]
� ϕν+1[1]

Fν+1 Fν Fν/Fν+1
ε

Fν+1[1]
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A morphism of complexes δν that lifts ε ◦ χν through ϕν+1[1] as indicated
then exists in D(A), as P ν[−ν] is in K− and ϕν+1[1] is a quasi-isomorphism.
Completing the upper row by cone(δν), the mapping cone over δν , to an ex-
act triangle, there exists next in the triangulated category D(A) a morphism
ϕν : cone(δν) → Fν as indicated so that the triple (ϕν+1, ϕν,χν) constitutes
a morphism of exact triangles. As the other two components are isomor-
phisms in D(A), the same necessarily holds true for ϕν , and, finally, that
isomorphism in D(A) can be represented by an actual quasi-isomorphism of
complexes, as cone(δν) is by construction a complex in K−.

It remains to observe that the morphism of complexes δν involves at most
a single non-zero component, represented by a morphism from P ν → P ν+1,
due to the support of the complexes involved. Indeed, this component is noth-
ing but the morphism induced in cohomology by the composition

Fν/Fν+1 −ε−→ Fν+1[1] � Fν+1/Fν+2[1].
It follows in particular that P

ν = cone(δν) has the desired form, with ∂ν that
single non-zero component of δν , up to the sign dictated by the convention on
differentials in mapping cones. This completes the inductive step.

As an aside, the reader may note that the preceding argument can as well
be made directly on the level of morphisms of complexes by invoking the ap-
propriate version of the horseshoe lemma to construct the quasi-isomorphism
ϕν with source P

ν of the form claimed.
So far, we have constructed a diagram of morphisms of complexes

P
a+1

�ϕa+1

P
a

�ϕa

· · · P
n

�ϕn

· · ·

Fa+1 Fa · · · Fn · · ·

and it remains to take the (essentially constant) direct limit

ϕ = lim−→
n

ϕn : P = lim−→
n

P
n −�−→ lim−→

n

Fn ∼= C

to finish the proof. �

We add a few remarks about the essence of this degeneracy criterion.

Remark 4.5 The point is that, under the assumptions made, each differential

di,n−i
r : Ei,n−i

r → Ei+r,n+1−i−r
r
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on the later pages E
•,•
r for r ≥ 1, by definition a morphism from a subquotient

of E
i,n−i
1 to one of E

i+r,n+1−i−r
1 , is already induced by the relevant compo-

nent of ∂n : P n = ⊕
i E

i,n−i → ⊕
i E

i,n+1−i = P n+1. Conversely, if there
exist such morphisms ∂n that induce the higher differentials in the spectral
sequence and that satisfy ∂n+1∂n = 0, then projectivity of the P n ensures that
the resulting complex is quasi-isomorphic to C, thus, constitutes a projective
resolution.

Moreover, the proof shows that the construction of the projective resolu-
tion of C is effective and natural. It suffices to replace successively the con-
necting morphisms Fν/Fν+1 → Fν+1/Fν+2[1] by the morphisms P ν[−ν] →
P ν+1[−ν − 1] they induce in cohomology.

Remark 4.6 It seems worthwhile to single out the simplest case. Assume that
the bicomplex C not only satisfies the hypotheses of Proposition 4.4 but that
furthermore there exists for each n at most one i ′n with in−1 < i ′n ≤ in and

E
i′n,n−i′n
1 	= 0. The spectral sequence then degenerates into a single complex

· · · → E
i′n,n−i′n
1 −∂n−→ E

i′n+1,n+1−i′n+1
1 → ·· · → E

i′a,a−i′a
1 → 0 (4.6.1)

with projective terms that is quasi-isomorphic to C, thus constitutes a projec-
tive resolution of C as postulated in Proposition 4.4.

The differential ∂n is simply obtained from the differential d
i′n,n−i′n
r :

E
i′n,n−i′n
r → E

i′n+1,n+1−i′n+1
r on the r th page of the spectral sequence, for

r = i′n+1 − i ′n, through the composition

∂n : E
i′n,n−i′n
1 � E

i′n,n−i′n
r −d

i′n,n−i′n
r−−−−→ E

i′n+1,n+1−i′n+1
r ↪→E

i′n+1,n+1−i′n+1
1

where the first morphism is necessarily an epimorphism and the last one a
monomorphism as the assumptions guarantee that there are no nonzero dif-

ferentials with source equal to E
i′n,n−i′n
r ′ or with target equal to E

i′n+1,n+1−i′n+1
r ′

on any earlier page r ′ < r .

5 Direct images on the determinantal variety

We now come to one of the central results.

5.1 The generic morphism

In addition to the projective K-module F of constant rank m, let G be a
second projective K-module, of constant rank n ≥ m. The K-module H =
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HomK(G,F ) is then still projective, of constant rank mn. We view H as the
affine K-variety of K-rational points of S = SymK(H ∨), locally isomorphic
to a polynomial ring over K in mn variables and naturally graded by the
symmetric powers which are in turn finite projective K-modules.

The projective K-modules F and G extend under − ⊗ S to projec-
tive S-modules F and G respectively.4 The evaluation homomorphism
HomK(G,F )⊗G → F yields by adjunction the K-linear inclusion G ↪→ F ⊗
H ∨ ⊆ F ⊗ S that induces the generic morphism ϕ : G → F between these
projective S-modules. Taking the mth exterior power over S and using that
|F | = ∧m

S F is invertible with inverse |F ∨| = ∧m
S F ∨ = |F ∨| ⊗ S, there re-

sults an S-linear form

∧m
S G ⊗S |F ∨| −(

∧m

S
ϕ)⊗S1−−−−−−−→ |F | ⊗S |F ∨| → S

whose image is the defining ideal of the locus where the generic morphism
drops rank and whose cokernel we denote by R. Locally, SpecR is described
by the vanishing of the maximal minors of the generic (m × n)-matrix. The
K-algebra R inherits the grading from S, and its graded components are
still finite projective K-modules, as follows from the classical Gaeta-Eagon-
Northcott complex [9, 11] that resolves R projectively as an S-module. In
particular, R is a perfect S-module of grade equal to n − m + 1. The singu-
lar locus of SpecR is locally defined by the submaximal minors Im−1(X),
whence has codimension n − m + 3 in SpecR. In particular, R is smooth in
codimension 2, a fact we shall exploit below.

Recall as well that π : P → SpecK denotes the structure morphism from
the projective space P = P(F ∨) ∼= P

m−1 of K-linear forms on F to the base
scheme.

Set Y = P ×SpecK H , with the canonical projections p : Y → P and
q : Y → H . Note that q can be identified with π ×SpecK H , whence we may
view it as the structure map of the projective bundle Y ∼= ProjH(F ∨) → H .
In particular, the results of Sect. 3 apply, if one replaces there K by H and F

by F .

5.2 The incidence variety and its resolution

Define as in the Introduction the incidence variety

Z = {([λ], θ) ∈ P ×SpecK H | λθ = 0} ⊆ Y

and denote by j the natural inclusion Z → Y . The composition q ′ =
qj : Z → H is then a birational isomorphism from Z onto its image q ′(Z) =

4If one wishes to keep track of the S-grading, G should be identified with the graded S-module
G ⊗ S(−1) generated in degree 1, while F = F ⊗ S is generated in degree 0.
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SpecR, while p′ = pj : Z → P is a vector bundle (with zero section θ = 0).
In particular, p′ is smooth, thus flat.

The vector bundle Z admits a compact description in terms of the bundle
of differential forms U = �1

P
(1). Since an element of the fiber �1(1)λ over a

closed point λ ∈ P sits in an exact sequence

0 → �1(1)λ → F → K → 0,

we obtain a closed point of Z by tensoring with G∨:

0 → �1(1)λ ⊗ G∨ → F ⊗ G∨ → G∨ → 0

and see thereby that

Z ∼= Spec
(
SymP(F∨)(�

1(1)∨ ⊗ G)
)
. (5.2.1)

The morphism j : Z → Y is a regular immersion of codimension n, zero-
locus of the cosection

� : q∗G → p∗(OP(1)) = OY (1) (5.2.2)

which corresponds by adjunction to the generic morphism G → q∗OY (1) ∼= F
and is determined locally through

�(q∗gj ) =
m∑

i=1

fi ⊗ xij .

Put differently, the S-module of sections of OP(1) ⊗ OH , isomorphic to F ,
contains the K-linear subspace F ⊗ H ∨ and this subspace in turn contains G

canonically. Then Z is the complete intersection in Y = P ×SpecK H given
locally by a basis of n sections of G ⊆ �(Y, OP(1) ⊗ OH ).

Accordingly, the direct image j∗OZ is resolved by locally free OY -
modules through the Koszul complex

j∗OZ �
(∧

Y (q∗G ⊗O Y p∗OP(−1)), ∂�(−1)

)
(5.2.3)

on the OY -linear form �(−1). As j is a finite morphism, indeed a closed
immersion, j∗OZ represents already the total direct image Rj∗OZ .

We now analyze the higher direct images (Rνq ′∗)p′∗(Mb
a(−c)), using

the degeneracy criterion from the foregoing section. As before, in view of
Lemma 3.8, it suffices to treat the case a + b ≥ m + 1.

Theorem 5.3 With Mb
a(−c) = H omOP

(�b−1(b),�a−1(a))(−c) as before,
the complex (R•q ′∗)p′∗(Mb

a(−c)) admits a projective resolution in D(S) by
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a perfect complex that is supported on [−n,m − 1] ⊆ Z and of amplitude at
most n.

The higher direct images (Rνq ′∗)p′∗(Mb
a(−c)) with ν 	= 0 vanish as soon

as

c ≤ 0 or c = 1 and b = m or a = 1 or c = 2, b = m and a = 1.

In these cases, the direct image q ′∗p′∗(Mb
a(−c)) admits a resolution

0 → P −d → ·· · → P 0 → q ′∗p′∗(Mb
a(−c)

) → 0

by finite projective S-modules P μ.
For a + b ≥ m + 1, the non-vanishing projective modules P μ are of the

form

μ P μ c

[m − n − 1, c − 2] Rm−1π∗Mb
a(−c+μ−m+1) ⊗S

∧m−1−μG ≥ m − n + 1

c − 1
min{m−a,m−b}⊕

k=0

∧b+k F ∨ ⊗S

∧a−c+k G ≥ a − n

c
m⊕

k=max{a,b}
∧k−a F ∨ ⊗S

∧k−b−c G [max{a − b − n,−n},0]

[c + 1,0] π∗Mb
a(−c+μ) ⊗S

∧−μG [−n,0]
[−n,0] π∗Mb

a(−c+μ) ⊗S

∧−μG < −n

(5.3.3)

Accordingly, the projective dimension d of q ′∗p′∗(Mb
a(−c)), with a + b ≥

m + 1, is given by

d c (a, b)

n − m + 1 2 (1,m)

n − m + 1 1 b = m

n − m + 1 [m − n,0]
−c + 1 [a − n,m − n]

−c [a − b − n,a − n − 1] a > b

−c [−n,a − n − 1] a ≤ b

−c − 1 [−n,a − b − n − 1] a > b

n < −n

In particular, for arbitrary integers a, b, c, the S-module q ′∗p′∗(Mb
a(−c)) is

perfect of grade equal to n − m + 1 for

c = m − n − 1 and a = m or b = 1, or
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m − n ≤ c ≤ 0, or

c = 1 and b = m or a = 1, or

c = 2 and b = m and a = 1.

Proof Observe that q ′∗p′∗ = q∗j∗j∗p∗, whence we can calculate the desired
derived direct image as

(Rq ′∗)p′∗(Mb
a(−c)

) � Rq∗
(
Rj∗

(
j∗p∗Mb

a(−c)
))

.

To evaluate the term on the right, we have first

j∗p∗Mb
a(−c) ∼= p∗H omOP

(�b−1(b),�a−1(a))(−c) ⊗O Y OZ

and then

Rj∗
(
j∗p∗Mb

a(−c)
) ∼= p∗H omOP

(�b−1(b),�a−1(a))(−c) ⊗O Y Rj∗OZ

by the projection formula, as p∗Mb
a(−c) is locally free on Y . Replacing

Rj∗OZ by its locally free OY -resolution described in Sect. 5.2 above, we
find that Rj∗(j∗p∗Mb

a(−c)) is represented in the derived category of Y by a
(chain) complex C with terms

C−i = p∗H omOP
(�b−1(b),�a−1(a))(−c − i) ⊗O Y p∗π∗∧i

G,

i = 0, . . . , n;
concentrated on the interval [−n,0]. We can now determine the higher di-
rect images under q∗ of Rj∗p′∗Mb

a(−c) by means of the hypercohomology

spectral sequence defined by this complex. The first page E
i,j

1 of that spectral
sequence is concentrated in the second quadrant, supported on the rectangle
[−n,0] × [0,m − 1] in the (i, j)-plane, with

E
i,j

1 = Rj q∗(Ci) =⇒ Ri+j q ′∗
(
p′∗Mb

a(−c)
)
.

Using the projection formula once more and noting that taking (higher) direct
images commutes with flat base change, we obtain next that

E
i,j

1 = Rj q∗(Ci) ∼= Rjπ∗
(

Mb
a(i − c)

) ⊗S

∧−i G.

In view of Theorem 3.9, for fixed i ∈ [−n,0], there is at most one index j

for which E
i,j

1 is not zero, and these terms are finite projective S-modules.
In particular, the assumptions of Proposition 4.4 are satisfied and the hy-
percohomology spectral sequence degenerates into a projective resolution of
(Rq ′∗)p′∗(Mb

a(−c)).
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The first page of the spectral sequence is concentrated in total degrees
[−n,m − 1], with at most n degrees supporting non-zero terms, whence the
claims about support and amplitude of the projective resolution follow.

For the detailed analysis of the projective resolutions we exhibit their terms
by means of Theorem 3.9. Recall that we assume as there that a + b ≥ m+ 1.
We proceed by cases.

(1) For (total) degree μ ≤ c − 2, Theorem 3.9, or Corollary 3.24, shows that
in the direct sum

P μ =
m−1⊕

j=0

E
μ−j,j

1
∼=

m−1⊕

j=0

Rjπ∗
(

Mb
a(μ − j − c)

) ⊗S

∧j−μG,

only the highest occurring direct image Rm−1π∗(Mb
a(μ − m + 1 − c))

can possibly be non-zero,

P μ = E
μ−m+1,m−1
1

∼= Rm−1π∗
(

Mb
a(−c + μ − m + 1)

) ⊗S

∧m−1−μG.

Moreover, the first factor in the tensor product is indeed non-zero if, and
only if, c −μ− 1 > 0 and the other factor is clearly non-zero if, and only
if, 0 ≤ m − 1 − μ ≤ n. This yields P μ 	= 0 exactly for

m − n − 1 ≤ μ ≤ min{m − 1, c − 2}.

(2) In total degree i + j = c − 1, Theorem 3.9(4) yields

P c−1 =
m−1⊕

j=0

E
i,j

1
∼=

m−1⊕

j=0

Rjπ∗
(

Mb
a(−j − 1)

) ⊗S

∧j+1−cG

∼=
min{a−b+m,m}⊕

j+1=a

F ∨
b−a+j+1 ⊗S

∧j+1−cG

=
min{m−b,m−a}⊕

k=0

F ∨
b+k ⊗S

∧a+k−cG

and the second factor in the tensor product is non-zero if, and only if,
0 ≤ a + k − c ≤ n. Combined with the range 0 ≤ k ≤ min{m − b,m − a}
of the summation, P c−1 is thus seen to be nonzero if, and only if,

max{c − a,0} ≤ min{m − a,m − b,n − a + c},
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equivalently,

max{c, a} ≤ min{m,m + a − b,n + c}.
In case c ≤ a, this condition just becomes a −n ≤ c as m− a,m− b ≥ 0.

(3) In total degree i + j = c we obtain from Theorem 3.9(3) that

P c =
m−1⊕

j=0

E
i,j

1
∼=

m−1⊕

j=0

Rjπ∗
(

Mb
a(−j)

) ⊗S

∧j−cG

∼=
m−b⊕

j=max{0,a−b}
F ∨

b−a+j ⊗S

∧j−cG

=
m⊕

k=max{a,b}
F ∨

k−a ⊗S

∧k−b−cG.

Taking into account that the second factor in the tensor product is nonzero
if, and only if, 0 ≤ k − b − c ≤ n and comparing this with the range of
the summation, it follows that P c 	= 0 if, and only if,

max{a, b, b + c} ≤ min{m,n + b + c}.
If c ≤ 0, this inequality becomes equivalent to max{a − b − n,−n} ≤
c ≤ 0. Note also that P c = 0 for b + c > m.

(4) Finally assume that the total degree satisfies μ = i + j > c. In that case
thus c − i < j and Corollary 3.24 shows E

i,j

1 = 0 for j 	= 0, whence

P μ = Eμ,0 ∼= π∗
(

Mb
a(μ − c)

) ⊗S

∧−μG.

In turn, this term is non-zero if, and only if, max{−n, c + 1} ≤ μ ≤ 0.

It remains to exhibit when P μ 	= 0 for some μ > 0. By case (1), this will
occur if 0 < min{m − 1, c − 2}, thus, for c > 2 (and m ≥ 2).

If c = 2, then P 1 = P c−1 	= 0 if, and only if, max{2, a} ≤ min{m,m − b +
a,n + 2} by case (2) above. As we always have max{2, a} ≤ m < n + 2 and
a ≤ m − b + a, the inequality fails only for a = 1, b = m. In the latter case,
indeed each P μ = 0 for μ > 0.

If c = 1, then the above results yield immediately P μ = 0 for all μ > 1, and
case (3) shows that P 1 = 0 if, and only if, max{a, b, b+1} = max{a, b+1} >

min{m,n + b + 1} = m, which in turn holds if, and only if, b = m. �

Remark 5.4 For any n ≥ m, a projective resolution for q ′∗p′∗Mb
a cannot be

shorter than displayed. Inspecting P −n+m−1, this implies, in a backhanded
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way, that Rm−1π∗Mb
a(−c) 	= 0 for each c > m, whence also π∗Mb

a(−c) 	= 0
for c < 0.

Example 5.5 To derive an S-presentation for q ′∗p′∗�a−1(a), consider that we
have

Mm
a = H omOP

(�m−1(m),�a−1(a))

= H omOP

(∧m
F ⊗ OP,�a−1(a)

)

= ∧m
F ∨ ⊗ �a−1(a)

and hence

�a−1(a) = |F | ⊗ Mm
a , (5.5.1)

where |F | is the determinant of F ; recall Sect. 3.5. From the second and the
third line of the table (5.3.3), applied with c = 0, we find that q ′∗p′∗Mm

a has
a presentation

∧mF ∨ ⊗S

∧a G ∧m−a F ∨ q ′∗p′∗Mm
a 0.

Tensoring with |F | we get a presentation

∧a G
ρ ∧a F q ′∗p′∗�a−1(a) 0.

We confirm the identity of ρ below in Theorem 6.2.

6 From algebra to geometry

We now use the homological results from Sects. 3–5 to prove the results as-
serted in the Introduction.

6.1 The non-commutative desingularization

We retain the notations from Sects. 5.1 and 5.2, but from now on K will
always be a field. As in the Introduction, we put

Ma = cok
∧a

Sφ

for 1 ≤ a ≤ m, and M = ⊕
a Ma . Set E = EndR(M), our intended non-

commutative desingularization of SpecR.
First we obtain a geometric description of Ma .
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Theorem 6.2 There is an isomorphism q ′∗(p′∗�a−1(a)) ∼= Ma , which fits in
the following commutative diagram

q ′∗q ′∗∧a F q ′∗p′∗�a−1(a)

∧a F Ma

∼=

where the leftmost vertical map is the canonical one, the lower horizontal map
comes from the definition of Ma , and the upper horizontal map is derived from
the exact sequence in Sect. 3.5.1.

Proof Let i : SpecR → SpecS be the inclusion. We will construct a more
elaborate version of the claimed diagram

i∗q ′∗
∧a

q ′∗(G)
i∗(q∗

∧a q ′∗(φ))

i∗q ′∗
∧a

q ′∗(F ) i∗q ′∗(p′∗�a−1(a)) 0

i∗
∧a G

i∗(
∧a φ)

∼=

i∗
∧a F

∼=

i∗Ma

∼=

0

(6.2.1)
where the two leftmost vertical maps are the canonical ones.

For brevity we will drop below most of the applications of i∗ from the
notations.

Let H0 ⊂ H be the locus where the rank of φ is exactly m − 1 and put
Z0 = (q ′)−1(H0). Then q ′ restricted to Z0 is an isomorphism.

The map φ : F → G pulls back to a map q ′∗(φ) : q ′∗(G) → q ′∗(F ). By
looking at fibers it is easy to see that it factors as

q ′∗(φ) : q ′∗(G) p′∗(�(1)) p′∗π∗F = q ′∗(F ). (6.2.2)

Since the exterior product preserves subbundles we get an factorization

∧a
q ′∗(φ) : ∧a

q ′∗(G) p′∗(�a(a))
∧a

p′∗π∗F = ∧a
q ′∗(F )
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and hence combining this with the pullback of a suitably shifted version of
(3.5.1) under p′ we get a complex

∧a
q ′∗(G)

∧a q ′∗(φ) ∧a
q ′∗(F ) p′∗(�a−1(a)) 0.

(6.2.3)
Since the first map in (6.2.2) is an epimorphism when restricted to Z0 and
since exterior powers also preserve epimorphisms, we get that (6.2.3) is exact
when restricted to Z0.

It follows that we have a complex

q ′∗
∧a

q ′∗(G)
q ′∗

∧a q ′∗(φ)

q ′∗
∧a

q ′∗(F ) q ′∗p′∗�a−1(a) 0

(6.2.4)
exact on H0. Comparing this with the right-exact sequence on SpecR

i∗
∧a G

i∗
∧a φ

i∗
∧a F Ma 0

we obtain (6.2.1), with a uniquely defined rightmost vertical map. It remains
to show that the vertical maps are isomorphisms. We will only consider the
rightmost one, as the others are similar but easier.

Since (6.2.4) is exact on H0 we find

q ′∗p′∗�a−1(a)
∣
∣
H0

= Ma

∣
∣
H0

.

Now q ′∗p′∗�a−1(a) is R-torsion free and Ma is maximal Cohen-Macaulay
over R (and hence R-reflexive) by [7, Corollary 2.6]. Since the codimension
of the complement of H0 in SpecR is at least 2 we obtain that the induced
map Ma → q ′∗p′∗�a−1(a) is an isomorphism. �

6.3 A tilting bundle

Put Ta = p′∗�a−1(a) and T = ⊕m
a=1 Ta , bundles on the incidence variety Z .

It follows from Theorem 6.2 that EndR(q ′∗T ) ∼= EndR(M) = E. We can now
prove Theorems A and C from the Introduction.

Theorem 6.4 We have T ⊥ = 0 in D(Qch(Z)) and ExtiO Z
(T , T ) = 0 for

i > 0. In other words, T is a classical tilting bundle on Z in the sense of [13].

Proof The condition T ⊥ = 0 follows immediately by considering the adjoint
pair (p′∗,p′∗) and the fact, due to Beı̆linson [1], that

⊕m
a=1 �a−1(a) is a tilting

bundle on P(F ∨). The vanishing of Ext follows from Theorem 5.3 applied
with c = 0. �
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Theorem 6.5 We have E ∼= EndO Z (T ). Furthermore E is noetherian on
both sides, is finite over its center, has finite global dimension and is a maxi-
mal Cohen-Macaulay R-module.

Proof Put E′ = EndO Z (T ). Since T is a tilting bundle on Z we obtain
Db(coh(Z)) ∼= Db

f (E′). Since Z is smooth it follows from [13, Theorem 7.6]
that E′ has finite global dimension.

From Theorem 5.3, applied again with c = 0, it follows that E′ is Cohen-
Macaulay.

We now have maps

E′ = EndO Z (T ) → EndS(q ′∗T ) ∼= EndS(M) = E. (6.5.1)

The locus where φ is not an isomorphism has codimension at least 2 in
both SpecR and Z , whence (6.5.1) is an isomorphism in codimension one.
Since both source and target of (6.5.1) are reflexive (the former e.g. by
[22, Lemma 4.2.1]) we obtain that (6.5.1) is an isomorphism. �

7 The quiverized Clifford algebra

In this section we compute the algebra structure of the non-commutative de-
singularization E defined in Sect. 6.1, giving in particular an explicit descrip-
tion of E as a path algebra of a certain quiver with relations derived in a
natural way from a Clifford algebra.

7.1 Notation

Our setting will be as in Sect. 6, so in particular K is a field. In addition
we fix ordered bases {f1, . . . , fm} and {g1, . . . , gn} for F and G, and let
{λ1, . . . , λm}, {μ1, . . . ,μn} be the associated dual bases for F ∨ and G∨.

We again set S = SymK(HomK(G,F )∨) = SymK(F ∨ ⊗ G), which is
canonically isomorphic to the polynomial ring over K in the variables xij =
λi ⊗gj . We let X be the generic (m×n)-matrix with entries (xij )ij , so that X

is the matrix of the map φ when expressed in terms of the bases {g1, . . . , gn},
{f1, . . . , fm}.

By CliffS(qφ) we will denote the Clifford algebra over S associated to
the quadratic form qφ : F ∨ ⊕ G → S which is such that qφ(λ, g) = λ(φ(g)).
Concretely CliffS(qφ) is the S-algebra generated by F ∨ and G subject to the
relations

λiλj + λjλi = 0 = λ2
i for i, j = 1, . . . ,m;

gigj + gjgi = 0 = g2
i for i, j = 1, . . . , n; and

λigj + gjλi = xij for i = 1, . . . ,m, j = 1, . . . , n.
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7.2 Quivers

Let � be a quiver—a directed graph—on finitely many vertices {1, . . . , r}. Let
D be a commutative ring (below it will be K or S). Denote by �ij the free D-
module with basis the set of paths in � from vertex i to vertex j , including the
trivial path eu at each vertex u. The direct sum D� = ⊕

i,j �ij is naturally
a D-algebra, the path algebra of �, with multiplication �jk ⊗ �ij → �ik

given by concatenation of paths where possible, and all other products trivial.
(Observe the indexing: we write our paths in functional order.) The paths
eu are idempotent and

∑
u eu is the identity element in D�, conveniently

denoted by 1. Below we will also consider quivers with an infinite number
of vertices (indexed from −∞ to ∞). In that case D� does not have a unit
element, but the eu are local units.

Let I ⊆ D� be a two-sided ideal. The pair (�, I ) is called a quiver with
relations, and the quotient D�/I its path algebra with relations. The relations
I will often be understood and dropped from the notation.

7.3 Quiverization

If A is a Z-graded algebra then we define the infinite quiverization5 as the bi-
graded algebra without unit Q∞(A) = ⊕

i,j∈Z
Aj−i with multiplication com-

ing from the multiplication in A: Ak−j × Aj−i → Ak−i . The term “quiver-
ization” is meant to be informal, indicating that Q∞(A) can often be advan-
tageously represented as a path algebra of a quiver with relations on a set of
vertices indexed by Z. If M is a Z-graded A-module then we may view M

as left Q∞(A)-module through the action Aj−i × Mi → Mj . We will denote
this Q∞(A)-module by Q(M).

For every i ∈ Z we have 1 ∈ A0 = Q∞(A)ii . This is an idempotent in
Q∞(A) which we denote by ei . The quiverization Qr(A) of order r of A is
defined as the quotient Q∞(A)/

∑
i 	∈[1,r] Q∞(A)eiQ∞(A). It is easy to see

that Q(M) is a right Qr(A)-module provided the grading of M is supported
only in degrees 1, . . . , r . We can often represent Qr(A) naturally by a quiver
with vertices [1, r].

The following lemma is trivial to prove.

Lemma 7.4 The functor M � Q(M) defines an equivalence of categories
between respectively:

(1) The category of graded A-modules and the category of graded Q∞(A)-
modules N such that N = ⊕

i eiN .
(2) The category of graded A-modules whose support is concentrated in de-

grees 1, . . . , r and the category of Qr(A)-modules.

5The knowledgeable reader will note we are basically using the formalism of Z-algebras here.
See e.g. [5].
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7.5 The doubled Beı̆linson quiver

It is clear that CliffS(qφ) is bigraded by degF = (1,0), degG = (0,1). In
this paper we consider two induced Z-gradings. For the first one (labeled “the
Z-grading”) we put degF ∨ = −1, degG = 1. For the second one (“the N-
grading”) we put degF ∨ = degG = 1.

The quiverized Clifford algebra on F ∨ and G is defined as C =
Qm(CliffS(qφ)) with CliffS(qφ) considered as being graded by the Z-grading.
Note that C is still naturally bigraded.

The S-algebra C can be represented as the path algebra with relations over
S of the doubled Beı̆linson quiver:

Q̃ : 1 g1...
gn

2 g1...
gn

...
λ1

λm

· · ·
...
λ1

λm

g1...
gn

m

...
λ1

λm

Note that gi, λj serve as the label for m − 1 different arrows. If there is con-
fusion possible then we use notations like peu or evp to indicate explicitly
the starting or ending point of the path p.

The a, b graded piece Cab of C consists of paths from a to b, thus Cab =
ebCea .

The relations (with coefficients in S) on Q̃ are directly derived from those
of CliffS(qφ):

λiλj + λjλi = 0 = λ2
i for i, j = 1, . . . ,m;

gigj + gjgi = 0 = g2
i for i, j = 1, . . . , n; and

λigj + gjλi = xij for i = 1, . . . ,m, j = 1, . . . , n

where we use the convention that whenever there are paths in such relations
that are not defined we silently drop them. This means that the relation of the
third type associated to vertex 1 is in fact λigj = xij and the one associated
to vertex m is gjλi = xij .

These relations generate an ideal J in the path-algebra SQ̃ and we have
C = SQ̃/J .

For further reference we note that C has an involution

λi �→ λi, gj �→ gj , ei �→ em+1−i (7.5.1)

which sends Cab to Cm+1−b,m+1−a .
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Remark 7.6 If we prefer to do so we may work over the ground field K

instead of over S. We find C = KQ̃/J ′ where J ′ is generated by the relations

λiλj + λjλi = 0 = λ2
i for i, j = 1, . . . ,m;

gigj + gjgi = 0 = g2
i for i, j = 1, . . . , n;

λk(λigj + gjλi) = (λigj + gjλi)λk for i, k = 1, . . . ,m, j = 1, . . . , n; and

gl(λigj + gjλi) = (λigj + gjλi)gl for i = 1, . . . ,m, j, l = 1, . . . , n.

The isomorphisms between the former presentation of C and this one are
given by

SQ̃/J → KQ̃/J ′ : λi �→ λi, gj �→ gj , xij �→ λigj + gjλi

and

KQ̃/J ′ → SQ̃/J : λi �→ λi, gj �→ gj .

It follows that, when considered as a K-algebra, C has cubic relations.

7.7 A Clifford action on M

We construct a natural map C → E = EndR(M). To describe a map C → E

we have to put a left C-module structure on M , and according to Lemma 7.4
it is sufficient to construct an action of CliffS(qφ) on M .

An S-endomorphism (or equivalently R-endomorphism) of M =⊕m
a=1 Ma = ⊕m

a=1 cok(
∧a

φ) is obtained from a pair of morphisms α,β

rendering the diagram

∧
G

∧
φ

β

∧
F

α

M 0

∧
G ∧

φ

∧
F M 0

(7.7.1)

commutative (putting
∧0F = ∧0G = S and

∧0
φ = idS ). We construct such

α,β as (super-)differential operators on
∧

F and
∧

G .

(1) For λ ∈ F ∨, define skew-derivations ∂λ : ∧
F → ∧

F of degree −1 in
F by (left) contraction λ � −; explicitly, for an element f 1 ∧ · · · ∧ f a ∈∧a F ,

∂λ(f
1 ∧ · · · ∧ f a) =

a∑

j=1

(−1)j−1λ(f j )(f 1 ∧ · · · ∧ f̂ j ∧ · · · ∧ f a).
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Then ∂λ extends as well to a skew derivation ∂λφ : ∧
G → ∧

G . Putting
(α,β) = (∂λ, ∂λφ) makes (7.7.1) commute. Denote the induced endomor-
phism of M again by ∂λ.

(2) For g ∈ G , define θg : ∧
G → ∧

G by the exterior multiplication θg(−) =
g ∧ −. We have an induced map θφ(g) : ∧

F → ∧
F . Putting (α,β) =

(θφ(g), θg) makes (7.7.1) commute. We denote the induced endomor-
phism of M also by θg .

Write ∂i = ∂λi
, θj = θgj

. It is easy to see that we have

(1) ∂i∂j + ∂j ∂i = 0 = ∂2
i and θiθj + θj θi = 0 = θ2

i ; and
(2) ∂iθj + θj ∂i = ∂i(φ(gj )) = xij

and hence we have defined an action of CliffS(qφ) on M .
We will prove below in Theorem 7.17 that the morphism C → EndR(M)

defined by the action above is an isomorphism, sending Cab to HomR(Ma,Mb).
Our avenue of proof once more proceeds by translating to geometry, where
we define an action of the Clifford algebra C on the tilting bundle T . We
prove (Proposition 7.14) that the two actions are compatible with the isomor-
phism E ∼= EndO Z (T ) from Theorem 6.5, and then (Theorem 7.15) that this
second action gives an isomorphism C → EndO Z (T ).

7.8 An S-presentation for C

In this section we prove a partial technical result (Lemma 7.12) which we will
use in the proof of Theorem 7.15.

Definition 7.9 With {λ1, . . . , λm} and {g1, . . . , gn} the fixed bases of F ∨ and
G, let Q∞ be the doubly infinite quiver over S

· · ·
g1...
gn

0 g1...
gn

...
λ1

λm

1 g1...
gn

...
λ1

λm

· · ·
...
λ1

λm

g1...
gn

m
g1...
gn

...
λ1

λm

· · ·
...
λ1

λm

with relations

λiλj + λjλi = 0 = λ2
i

gigj + gjgi = 0 = g2
i

λigj + gjλi = xij .

We define C∞ = Q(CliffS(qφ)). Then C∞ is the S-path algebra of Q∞
with relations as above. Of course C∞ is again naturally graded by C∞

ab =
ebC

∞ea , and surjects onto C.
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Verification of the following version of a Poincaré-Birkhoff-Witt (PBW)
basis for C∞ is routine (and follows formally from the existence of a similar
basis for CliffS(qφ)). Recall that we write paths in Q∞ in functional order.

Lemma 7.10 The algebra C∞ is free as an S-module. More precisely, a basis
for the graded piece C∞

ab consists of paths

ebλβb
λβb+1 · · ·λβl

gαl
gαl−1 · · ·gαaea (7.10.1)

with αa > αa+1 > · · · > αl and βl < βl−1 < · · · < βb.

We will refer to writing an element of C∞ in terms of this basis as the “PBW”
expansion for the ordering λm < · · · < λ1 < g1 < · · · < gn. There is a similar
PBW expansion with the roles of gi ,λj reversed.

Proposition 7.11 Let D be the kernel of the surjection C∞ → C. The graded
piece Dab is S-generated by two types of paths: those leaving [1,m] to the
right

ebλβb
λβb+1 · · ·λβl

gαl
gαl−1 · · ·gαaea (7.11.1)

with l > m, αa > αa+1 > · · · > αl , and βl < βl−1 < · · · < βb; and those leav-
ing [1,m] to the left

ebgαb
gαb−1 · · ·gαl

λβl
λβl+1 · · ·λβaea (7.11.2)

with l < 1, βa < βa−1 < · · · < βl , and αl > αl+1 > · · · > αb.

Proof We need to prove that the paths (7.11.1) and (7.11.2) generate Dab. To
this end, we claim that with the natural identifications

∧k F ∨ ⊆ C∞
a,a−k and

∧k G ⊆ C∞
a,a+k in mind,

C∞
lb · C∞

al ⊆
∑

k≥l

∧k−bF ∨ · ∧k−a G (7.11.3)

and, symmetrically,

C∞
lb · C∞

al ⊆
∑

k≤l

∧k−bG · ∧k−a F ∨.

Indeed, by Lemma 7.10, any element of C∞
lb · C∞

al is a linear combination
of paths of the form ebλgelλ

′g′ea , where λ,λ′, respectively g,g′ represent
products of λi , respectively gj . The length of the path λ is not less than l − b,
while that of g′ is not less than l − a. Applying Lemma 7.10 to the product
gλ′ then gives the first containment. The other follows similarly. �
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The presentation in Proposition 7.11 is not minimal for the N-grading on S.
We next give a slightly smaller presentation, which is sufficient for our proof
of Theorem 7.17, even though it is still not minimal. For the best result see
Proposition 9.3.

Lemma 7.12 The graded piece Cab has an S-free presentation of the form

Q ⊕ P1 −ρ−→ P0 → Cab → 0, (7.12.1)

where

• P0 = ⊕
max{a,b}≤k≤m

∧k−b
S F ∨ ⊗ ∧k−a

S G
• P1 = ⊕

0≥l≥max{a−m,b−m}
∧b−l

S G ⊗ ∧a−l
S F ∨

• Q = ⊕
max{a−m,b−m}>l≥max{a−m,b−n}

∧b−l
S G ⊗ ∧a−l

S F ∨

and the map ρ is the restriction of the inclusion of D into C∞. Furthermore
ker(ρ |P1) ⊆ S>0P1.

Proof Our starting point is the free presentation of Cab given in Proposi-
tion 7.11. It takes the form (remember once again that paths are written in
functional order) ebDea ↪→ ebC

∞ea , where

ebC
∞ea =

⊕

max{a,b}≤k≤min{a+n,b+m}

∧k−b
S F ∨ ⊗ ∧k−a

S G

and

ebDea =
(

⊕

m<k≤min{a+n,b+m}

∧k−b
S F ∨ ⊗ ∧k−a

S G
)

⊕
(

⊕

1>l≥max{a−m,b−n}

∧b−l
S G ⊗ ∧a−l

S F ∨
)

.

In the resulting presentation there is some cancellation, which simplifies
things to

⊕

1>l≥max{a−m,b−n}

∧b−l
S G ⊗ ∧a−l

S F ∨ →
⊕

max{a,b}≤k≤m

∧k−b
S F ∨ ⊗ ∧k−a

S G

which is (7.12.1).
Now we prove the additional claim of the lemma. Assume that we have

ρ

(
0∑

α,l=max{a−m,b−m}
sl,αpl,α

)

= 0
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with pl,α ∈ ∧b−l
S G ⊗ ∧a−l

S F ∨ and sl,α ∈ S. This can be rewritten as an iden-
tity in C∞

0∑

α,l=max{a−m,b−m}
sl,αpl,α =

∑

β,k≥m+1

tk,βqk,β (7.12.2)

with qk,β ∈ ∧k−b
S F ∨ ⊗ ∧k−a

S G and tk,β ∈ S. We may assume that the sl,α ,
tk,β are homogeneous for the N-grading.

Choose l′ maximal such that there exists sl′,α 	= 0. We have to show that
sl′,α ∈ S>0 for all α corresponding to this l′. Assume on the contrary that there
is some α′ such that sl′,α′ 	∈ S>0.

By our restriction on l we have b − l ≤ m, a − l ≤ m in the expression
for pl,α . Right-multiplying (7.12.2) by a suitable product of the λj and left-
multiplying by a suitable product of the gi , we obtain an identity (using
(7.11.3)) of paths starting and ending in some vertex v ∈ [1,m]

∑

1≤i1<···<im≤n

s′
i1...im

gi1 · · ·gimλ1 · · ·λm =
∑

β ′
t ′β ′q ′

β ′ (7.12.3)

where s′
i1...im

∈ S and at least one s′
i1...im

/∈ S>0, t ′β ∈ S and the q ′
β ′ are paths

leaving [1,m] to the right as in (7.11.1).
The PBW expansion of gi1 · · ·gimλ1 · · ·λm in terms of paths going first to

the right is of the form

±[i1 · · · im|1 · · ·m] + (an S-linear combination of paths of positive length)

where [i1 · · · im|1 · · ·m] is the minor in X with columns i1, . . . , im.
Substituting this into (7.12.3) and looking at constant terms we obtain an

identity in S:
∑

1≤i1<···<im≤n

±s′
i1...im

[i1 · · · im|1 · · ·m] = 0.

This is only possible if all s′
i1...im

are in S>0, yielding a contradiction. �

7.13 A Clifford action on the tilting bundle

Let T = ⊕
a Ta = ⊕

a p′∗�a−1(a) be the tilting bundle on Z defined in
Sect. 6.3. In this section we construct an algebra morphism C → EndZ (T )

which we show to be an isomorphism afterwards. To construct the morphism
it is sufficient (according to Lemma 7.4) to construct a left action of CliffS(qφ)

on T .
We have to give the action of the generators. For the action of F ∨ we use

the composition

∂ : F ∨ ⊗ �b−1(b) → �1(1)∨ ⊗P �b−1(b) → �b−2(b − 1), (7.13.1)
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where the first map is obtained as the dual of the canonical map

�1(1) → F ⊗ OP

introduced for example in (3.5.1), while the second map is contraction.
For the G-action we use the composition

θ : G ⊗ p′∗�b−1(b) = q ′∗G ⊗O Z p′∗�b−1(b) → p′∗�1(1) ⊗O Z p′∗�b−1(b)

= p′∗(�1(1) ⊗OP
�b−1(b)) → p′∗�b(b + 1) (7.13.2)

where the first arrow is obtained from the description (5.2.1) and the second
arrow is multiplication.

One checks that the F ∨- and G-actions combine to give the requested ac-
tion

CliffS(qφ) ⊗ T → T .

Proposition 7.14 The morphisms C → E = EndR(M) and C → EndO Z (T )

defined in Sects. 7.7 and 7.13 are compatible with the isomorphism
EndO Z (T ) → E of Theorem 6.5.

Proof From the construction in Sect. 7.7 we know that the constructed action
Cab ⊗ Ma → Mb lifts to an action

CliffS(qφ)b−a ⊗ ∧a F → ∧bF . (7.14.1)

Likewise the same types of formulas show that the action Cab ⊗
p′∗�a−1(a) → p′∗�b−1(b) lifts to an action

CliffS(qφ)b−a ⊗ q ′∗∧a F → q ′∗∧bF . (7.14.2)

It is now easy to see the (7.14.1) and (7.14.2) are compatible, whence the
originals are compatible by Theorem 6.2. �

Theorem 7.15 The map C → EndO Z (T ) obtained by applying Lemma 7.4
to the action constructed in Sect. 7.13 is an isomorphism.

Proof We have to show that Cba → HomO Z (Tb, Ta) is an isomorphism.
From Lemma 7.16 below together with the involution Cba ↔ Cm+1−a,m+1−b

(see (7.5.1)), we easily deduce that we may assume a + b ≥ m + 1. We make
this assumption in the rest of the proof.

As S-modules we have

CliffS(qφ)a−b =
⊕

c

∧c
G ⊗ ∧b−a+c

F ∨ ⊗ S =
⊕

c

∧cG ⊗ ∧b−a+cF ∨.
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We equip CliffS(qφ)a−b with a filtration F obtained from the value of c, that
is,

Fu CliffS(qφ)a−b =
u⊕

c=0

∧c
G ⊗ ∧b−a+c

F ∨ ⊗ S =
u⊕

c=0

∧cG ⊗ ∧b−a+cF ∨.

We will start by proving that the induced map

Fm−b CliffS(qφ)a−b → HomO Z (p′∗�b−1(b),p′∗�a−1(a)) (7.15.1)

is an epimorphism.
In Sect. 3.19 we have constructed an action by OP-linear derivations

∂ : F ∨ ⊗ K → K(−1)[1]. (7.15.2)

This extends to an action by OZ -linear derivations

∂ : F ∨ ⊗ p′∗
K → p′∗

K(−1)[1].
We produce an additional action

θ : G ⊗ p′∗
K → p′∗

K(1)[−1] (7.15.3)

by p′∗
K-linearly extending the K-linear map

G ⊗ K → G ⊗ �(1)∨ ⊗OP
�(1) ⊗P K

→ G ⊗ �(1)∨ ⊗OP
K(1)[−1]

⊂ OZ ⊗OP
K(1)[−1]

= p′∗
K(1)[−1] (3.5.1)

where the second arrow is multiplication in the graded sheaf of algebras K

via the inclusion �1 ⊂ K
−1. Since the image of this inclusion consists of

closed elements the resulting multiplication is compatible with the differen-
tial. (Note: the multiplication F ⊗ K → K(1)[−1] is not compatible with the
differential.)

One readily checks that (7.15.2) and (7.15.3) combine to give an OZ -linear
action

CliffS(qφ)s ⊗ p′∗
K → p′∗

K(s)[−s]. (7.15.4)

Put s = a − b. We obtain an action

CliffS(qφ)a−b ⊗ p′∗
K(b)[−b + 1] → p′∗

K(a)[−a + 1]
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which after truncating in homological degree zero becomes

CliffS(qφ)a−b ⊗ p′∗
K≤b−1(b) → p′∗

K≤a−1(a)

so that we finally get a composition

Fm−b CliffS(qφ)a−b ↪→ CliffS(qφ)a−b

→ RHomD(Z)(p
′∗

K≤b−1(b),p′∗
K≤a−1(a))

∼= HomO Z (Tb, Ta). (7.15.5)

It is easy to check that the second map coincides with the one obtained from
our action of C on T . We will show that (7.15.5) is an epimorphism.

Using the same methods as above we may define OY -linear actions

∂ : F ∨ ⊗ p∗
K → p∗

K(−1)[1]
θ : G ⊗ p∗

K → p∗
K(1)[−1]

which are compatible with the natural map p∗
K → j∗p′∗

K. For example θ is
obtained by extending

G ⊗ K → G ⊗ F ∨ ⊗K F ⊗K K

→ G ⊗ F ∨ ⊗ K(1)[−1]
⊂ S ⊗P K(1)[−1]
= p∗

K(1)[−1].
Unfortunately θ is now not compatible with the differential. However the
commutator

dKθ + θdK : G ⊗ p∗
K → p∗

K(1)

is given by multiplication with the cosection � : G → OY (1) defined in
(5.2.2). Written compactly,

dKθ + θdK = �.

Let L = (
∧

Y (q∗G ⊗O Y p∗OP(−1)), ∂�(−1)) be the Koszul complex of lo-
cally free OY -modules resolving j∗OZ which was introduced in (5.2.3). Mul-
tiplication by elements of G defines an action

θ̃ : G ⊗ L → L(1)[−1]
which is again is not compatible with the differential. However one computes

dLθ̃ + θ̃dL = �
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so that the combined actions

∂
def= ∂13 : F ∨ ⊗ (L ⊗O Y p∗

K) → L ⊗O Y p∗
K(−1)[1]

�
def= ±θ̃12 ⊗ 1 + 1 ⊗ θ13 : G ⊗ (L ⊗O Y p∗

K) → L ⊗O Y p∗
K(1)[−1]

commute with the total differential on the complex associated to the double
complex L ⊗OP

p∗
K. (Here the subscripts indicate the factors of the tensor

product to which the maps apply.)
It is easy to see that these actions combine to give an action

CliffS(qφ)s ⊗ (L ⊗O Y p∗
K) → L ⊗O Y p∗

K(s)[−s] (7.15.6)

which is compatible with the total differential and with the natural map

L ⊗O Y p∗
K → j∗OZ ⊗O Y p∗

K = j∗p′∗
K.

Put s = a − b. Then (7.15.6) restricts to a map

CliffS(qφ)a−b ⊗ p∗
K≤b−1(b) → L ⊗O Y p∗

K≤a−1(a). (7.15.7)

For t ∈ N and C a complex let σ≥tC denote the naive truncation of C in
cohomological degrees ≥ t . Then (7.15.7) restricts again to

Fm−b CliffS(qφ)a−b ⊗ p∗
K≤b−1(b) → σ≥−(m−b)

L ⊗O Y p∗
K≤a−1(a).

We now obtain a commutative diagram

Fm−b CliffS(qφ)a−b

α

β

HomO Y (p∗
K≤b−1(b), σ≥−(m−b)

L ⊗O Y p∗
K≤a−1(a))

γ1

RHomD(Y )(p
∗
K≤b−1(b), σ≥−(m−b)

L ⊗O Y p∗
K≤a−1(a))

γ2

CliffS(qφ)a−b RHomD(Y )(p
∗
K≤b−1(b),L ⊗O Y p∗

K≤a−1(a))

δ

CliffS(qφ)a−b
ε

RHomD(Z)(p
′∗

K≤b−1(b),p′∗
K≤a−1(a))

where the horizontal arrows are obtained from the Clifford algebra actions
and the vertical arrows are the natural ones. The commutativity of the lower
square follows from the above discussion.
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Looking back at (7.15.5) we see that we have to show that εβ is an epi-
morphism on degree zero cohomology. So we have to show that δγ2γ1α is an
epimorphism on degree zero cohomology.

The fact that L is a resolution of j∗OZ and formal adjointness arguments
imply that δ is a quasi-isomorphism (in fact this is the basis of the proof of
Theorem 5.3).

We claim that γ2 is an epimorphism on degree zero cohomology. To this
end we look at the distinguished triangle

σ≥−(m−b)
L ⊗O Y p∗

K≤a−1(a) → L ⊗O Y p∗
K≤a−1(a)

→ σ<−(m−b)
L ⊗O Y p∗

K≤a−1(a) →

It is sufficient to prove that

HomD(Y)

(
p∗

K≤b−1(b), σ<−(m−b)
L ⊗O Y p∗

K≤a−1(a)
) = 0

which in turn follows from

HomD(Y)

(
p∗

K≤b−1(b),L
−c[c] ⊗O Y p∗

K≤a−1(a)
) = 0

for c > m − b. To prove this last equation we note that

HomD(Y)

(
p∗

K≤b−1(b),L
−c[c] ⊗O Y p∗

K≤a−1(a)
)

= ∧c
G ⊗ Hc

(
P, Mb

a(−c)
) ⊗ S

The required vanishing now follows from Theorem 3.9(2, 4, 5).
We also claim that γ1 is a quasi-isomorphism. This follows immediately

from Sect. 3.12(e) which states that the sheaf-Homs between the terms of
p∗

K≤b−1(b) and σ≥(m−b)
L ⊗O Y p∗

K≤a−1(a) have no higher cohomology.
Finally we claim that α is a quasi-isomorphism. To prove this we filter the

complex HomO Y (p∗
K≤b−1(b), σ≥−(m−b)

L ⊗O Y p∗
K≤a−1(a)) by the de-

grees in the L-complex and we equip CliffS(qφ) with the filtration F defined
above.

Taking associated graded complexes we find that we have to show that

∧c
G ⊗ ∧a−b+c

F ∨ ⊗ S → HomO Y
(
p∗

K≤b−1(b),L
−c[c] ⊗ p∗

K≤a−1(a)
)

= ∧c
G ⊗ HomOP

(
K≤b−1(b),K≤a−1(a)(−c)[c]) ⊗ S

is a quasi-isomorphism for c ≤ m − b. One verifies that up to sign this is in
fact the map id⊗∂ ⊗ id where ∂ is as defined in (3.20.1). To finish the proof
that (7.15.5) is an epimorphism it is now sufficient to invoke Lemma 3.20.
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At this point we know that Cba → HomO Z (Tb, Ta) is an epimorphism.
We will proceed to show that it is an isomorphism. With notations as in
Lemma 7.12 (swapping a and b) we may construct a commutative diagram

P1 ⊕ Q
ρ

∃ (α1,α2)

P0 Cba 0

P1 P0 HomZ (Tb, Ta) 0

(7.15.8)

where P0 = Fm−b CliffS(qφ)a−b is as in (7.15.1). The upper exact sequence
is obtained from Lemma 7.12. The arrow P0 → HomZ (Tb, Ta) is defined as
the composition P0 → Cba → HomZ (Tb, Ta). By the second and third row
of (5.3.3) with c = 0 (also using the assumption a + b ≥ m + 1) we know the
minimal resolution of HomZ (Tb, Ta), which tells us that we can complete the
lower row as we did.

Then the existence of (α1, α2) follows but its properties are a priori un-
known. Nonetheless we claim that α1 must be an isomorphism. Assume this is
not the case. Choose two sets of homogeneous bases (xi)i=1,...,N , (yi)i=1,...,N

for P1 ordered in ascending degree. Let A be the matrix of α1 with respect to
these bases. Since A is not invertible, easy degree considerations show that
after change of basis A may be put in the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · 0 0 A1t+1 · · · A1N

...
. . .

...
...

...
...

0 · · · 1 0 At,t+1 · · · AtN

0 · · · 0 0 At+1t+1 · · · A1N

...
. . .

...
...

...
...

0 · · · 0 0 AN,t+1 · · · ANN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It follows that P1, as a graded S-module, may be decomposed as P1 = P ′
1 ⊕

P ′′
1 with P ′′

1
∼= S(−u) for u = degxt such that the restriction of α1 to P ′′

1
is zero. It then follows from (7.15.8) that ρ |P ′′

1
= 0 as well. In other words

P ′′
1 ⊆ ker(ρ |P1). Since P ′′

1 	⊆ S>0P1 this contradicts Lemma 7.12.
Hence α1 is an isomorphism and as a result (α1, α2) is an epimorphism.

Then diagram (7.15.8) easily yields that Cba → HomO Z (Tb, Ta) is an iso-
morphism. �

The following lemma was used.
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Lemma 7.16 There is a commutative diagram

CliffS(qφ)a−b

α

q ′∗p′∗Mb
a

β

CliffS(qφ)a−b q ′∗p′∗Mm+1−a
m+1−b

where the horizontal maps are those in Theorem 7.15, α is obtained from the
involution on CliffS(qφ) which is the identity on F ∨ ⊕ G , and β is obtained
from the isomorphism Mb

a
∼= Mm+1−a

m+1−b exhibited in Lemma 3.8.1.

Proof The isomorphism Mb
a

∼= Mm+1−a
m+1−b in Lemma 3.8.1 is derived from the

non-degenerate pairing (3.8.3)

− ∧ −: �a−1(a) ⊗OP
�m−a(−a) → �m−1

and likewise the induced isomorphism p′∗Mb
a

∼= p′∗Mm+1−a
m+1−b can be ob-

tained from the induced pairing

− ∧ −: p′∗�a−1(a) ⊗OP
p′∗�m−a(−a) → p′∗�m−1.

It is therefore sufficient to show that for λ ∈ F ∨ and g ∈ G the actions of ∂λ

and θg as defined in Sect. 7.13 are self-adjoint for this pairing. This is an easy
exercise which we leave to the reader. �

Combining the above theorem with Proposition 7.14 we have the main
result of this section.

Theorem 7.17 The endomorphism algebra E = EndR(M) is isomorphic to
the quiverized Clifford algebra C.

8 The commutative desingularization as a moduli space

Having completed the proofs of the statements contained in Theorems A–C in
the Introduction we now include some miscellaneous sections. In this section
we show that the canonical commutative desingularization Z of SpecR can
be obtained as a fine moduli space for certain representations over the non-
commutative one.

Specifically, we prove in Theorem 8.9 that Z represents the functor of flat
families of representations W of Q̃ which have dimension vector (1,m −
1,

(
m−1

2

)
, . . . ,1) and which are generated by Wm. We then identify the points

in Z corresponding to the simple representations W as those lying over the
non-singular locus of SpecR.
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8.1 Quiver representations

A K-representation, V , of a quiver � associates a (finite-dimensional) K-
vector space Vi to each vertex i of � and a linear map V (a) : V (i) → V (j) to
each arrow a : i → j . A homomorphism f of representations from V to V ′ is
given by a collections of linear maps for each vertex f (i) : V (i) → V ′(i) so
that the obvious diagram commutes. The category rep(�) of representations is
an abelian category. The dimension vector of V , a function from the vertices
of � to the natural numbers, assigns to i the K-rank of V (i). The representa-
tions of � with a fixed dimension vector θ = (θ(i))i are parametrized by the
vector space

∏
i→j HomK(V (i),V (j)), and thus the isomorphism classes of

representations V with dimension vector θ are in one-one correspondence
with the orbits under the action of

∏
i GLθ(i)(K).

These notions clearly generalize to the case where K is an arbitrary com-
mutative ring and each V (i) is a free K-module of finite rank.

8.2 Baby case

The Beı̆linson algebra associated to a vector space F of rank m over the
field K is the order-m quiverization (see Sect. 8.1) Qm(

∧
F ∨) of the exterior

algebra of F ∨.
The Beı̆linson algebra can be represented as the path algebra of the

Beı̆linson quiver

Q : 1 2
...
λ1

λm
. . ....

λ1

λm

m
...
λ1

λm

equipped with the anti-commutativity relations λiλj + λjλi = 0 = λ2
i . The

category rep(Q) is equivalent to the category of graded left
∧

F ∨-modules
with support in degrees 1, . . . ,m (see Lemma 7.4).

For an arbitrary commutative K-algebra A we let R(A) be the set of iso-
morphism classes W of representations of Q of the form

W : W1 W2
...
λ1

λm
. . ....

λ1

λm

Wm
...
λ1

λm

such that each Wa is a projective A-module of rank
(
m−1
a−1

)
, and W is generated

by Wm = A.
For a projective A-module P of rank m − 1 and a split monomorphism

α : P → F ⊗ A, define a representation Wα ∈ R(A) by

(Wα)a = ∧m−a
A P ∨
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for a = 1, . . . ,m, with P ∨ = HomA(P,A). Define the action of λ ∈ F ∨ on
Wα by the left exterior multiplication

α∨(λ) ∧ −: ∧m−a
A P ∨ → ∧m−a+1

A P ∨,

where α∨ : F ∨ ⊗ A � P ∨ is the A-dual of α.

Lemma 8.3 Every W ∈ R(A) is of the form Wα for a uniquely determined
A-projective P of rank m − 1 and split monomorphism α : P → F ⊗ A.

Proof Let W ∈ R(A). Viewed as a left module over (
∧

F ∨)⊗A = ∧
A(F ∨ ⊗

A), W is generated by Wm = A. This gives in particular a surjective homo-
morphism

π : F ∨ ⊗ A → Wm−1.

If W = Wα then Wm−1 = ∧1
AP ∨ = P ∨, and thus α = π∨ can be reconstructed

from W , giving uniqueness.
For W arbitrary, put I = kerπ . As W is generated by Wm we find that W

is a quotient of
∧

A((F ∨ ⊗ A)/I) = ∧
AWm−1. Since W and

∧
AWm−1 have

the same rank, we see that W ∼= ∧
AWm−1 is of the form Wα . �

With P = P(F ∨) once more the projective space of linear forms, let
U = �1(1) = ker(F ⊗ OP → OP(1)) be the tautological bundle. Any split
monomorphism P → F ⊗ A with P of rank m − 1 is uniquely obtained as a
pullback of U → F ⊗ OP across an A-point η : SpecA → P of P. Combining
this with Lemma 8.3 we obtain the following corollary.

Corollary 8.4 The functor R is representable by P(F ∨); equivalently, P(F ∨)

is a fine moduli space for R. The universal bundle is given by B0 =∧
P(F∨)U ∨, where λ ∈ F ∨ acts via ∂∨(λ) ∧ −. �

8.5 Representations of the quiverized Clifford algebra

Reintroduce now the second K-vector space G of rank n, with its fixed basis
{g1, . . . , gn}, and consider again from Sect. 7.5 the doubled Beı̆linson quiver
on F ∨ and G

Q̃ : 1 g1...
gn

2 g1...
gn

...
λ1

λm

· · ·
...
λ1

λm

g1...
gn

m

...
λ1

λm

with relations as before. Again let C be its path algebra.



R.-O. Buchweitz et al.

For an arbitrary commutative K-algebra A, let R̃(A) consist of those iso-
morphism classes of representations

W : W1 g1...
gn

W2 g1...
gn

...
λ1

λm

· · ·
...
λ1

λm

g1...
gn

Wm

...
λ1

λm

such that each Wa is a projective A-module of rank
(
m−1
a−1

)
, and W is generated

as a left C-module by Wm = A.

Proposition 8.6 Let W ∈ R̃(A). Then the central elements xij ∈ C act as
scalars (elements of A) on W . Furthermore, W is generated by Wm as a left
module over

∧
A(F ∨ ⊗ A).

Proof Each homogeneous A ⊗ C-linear endomorphism of W is determined
by its action on Wm. From the fact that Wm = A, we deduce that every such
endomorphism is given by multiplication by some element of A. In particular,
this holds for multiplication by xij .

Any element of C can be written as a linear combination of products
ebλgxea , where λ, g, and x are products of λk , gl , and xij . As each gl

acts with degree +1, glWm = 0. It follows that W is generated by Wm over
(
∧

F ∨) ⊗ A = ∧
A(F ∨ ⊗ A) alone. �

8.7

Suppose now we are given a projective A-module P of rank m−1, and a pair
of homomorphisms

α : P → F ⊗ A, β : P ∨ → G∨ ⊗ A

with α a split monomorphism. Define Wαβ ∈ R̃(A) to have

(Wαβ)a = ∧m−a
A P ∨

as before, with λ ∈ F ∨ again acting via α∨(λ) ∧ −, and with g ∈ G acting via
the contraction β∨(g) � −. Explicitly, g sends u1 ∧ · · · ∧ um−a to

m−a∑

j=1

(−1)j−1uj (β∨(g))(u1 ∧ · · · ∧ ûj ∧ · · · ∧ um−a) ∈ ∧m−a−1
A P ∨.
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Proposition 8.8 Every W ∈ R̃(A) is of the form Wαβ for a uniquely deter-
mined projective P of rank m − 1 and a pair of homomorphisms

α : P → F ⊗ A, β : P ∨ → G∨ ⊗ A

with α a split monomorphism.

Proof Any representation class W ∈ R̃(A) can be viewed as an object of
R(A) by simply ignoring the rightward-pointing arrows of Q̃. By Lemma 8.3,
such an object is necessarily of the form Wα = ∧

AP ∨ for some P and some
monomorphism α : P ↪→F ⊗ A. It remains only to construct β .

The central elements xij = λigj + gjλi ∈ C act on W as multiplication by
certain scalars aij ∈ A. Applying this to the generator 1 ∈ A = Wm, we obtain

aij = gjλi,

so that in particular each gj acts as the left super-S-derivation on
∧

AP ∨

sending α∨(λi) to aij . Hence the action of G on
∧

AP ∨ is provided by a
homomorphism γ : G ⊗ A → P , which dualizes to a map β : P ∨ → G∨ ⊗
A such that γ (g) is given by contraction with β∨(g) for each g ∈ G. This
shows that W ∼= Wαβ . As in Lemma 8.3, both α and β can be reconstructed
from W . �

Let Z again be the Springer desingularization of SpecR. As in Sect. 5.2,
we write

Z = Spec(SymP(F∨)(U ∨ ⊗ G)).

The bundle
∧

P
U ∨ ⊗P SymP(U ∨ ⊗ G) carries a natural C-action where λ ∈

F ∨ acts via ∂∨(λ) ∧ − and g ∈ G sends a section e of U ∨ to e ⊗ g and fixes
U ∨ ⊗ G. Denote this latter super-derivation by g � −. Letting B be the OZ -
module determined by

∧
P

U ∨ ⊗P SymP(U ∨ ⊗ G), we see that B = p′∗B0,
where B0 = ∧

P
U ∨ is as in Corollary 8.4 and p′ : Z → P is the projection.

Of course B is still a C-module.

Theorem 8.9 The functor R̃ is representable by Z . The universal bundle is
given by B = p′∗(

∧
P

U ∨).

Proof An A-point of Z consists of two pieces of data. The first of these is a
point η : SpecA → P, and we obtain from the canonical map U → F ⊗ OP a
split monomorphism

∂η : Uη → F ⊗ A

with Uη an A-projective of rank m − 1. The other information carried by a
point of Z is an A-point ξ : SpecA → Spec SymP(U ∨

η ⊗ G). Such a point
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corresponds to an A-linear map U ∨
η ⊗ G → A, which by adjunction yields a

homomorphism β : U ∨
η → G∨ ⊗ A.

Thus the A-points of Z are in one-one correspondence with the pairs
(α,β), i.e., with the elements of R̃(A). This proves that Z represents R̃.
It is easy to see that the induced actions of F ∨ and G on Bξ = (B0)η define
an isomorphism Bξ

∼= Wαβ . �

8.10 Simple representations

Our next task is to identify the points of Z corresponding to the simple repre-
sentations W ∈ R̃(A). We shall see that they are precisely those points lying
over the non-singular locus of SpecR. We first record an easy lemma.

Lemma 8.11 Assume that A = K . Then W ∈ R̃(K) is simple if and only if
W is generated by W1.

Proof If we consider only the action of the λi then W = ∧
P ∨. We see that

any subrepresentation of W contains its socle Wm = ∧m−1
A P ∨. Hence if W1

generates W then this subrepresentation must be everything. �
Lemma 8.12 The following are equivalent for W = Wαβ ∈ R̃(K):

(1) W is a simple left C-module;
(2) β : P ∨ → G∨ is a monomorphism.

Proof The perfect pairing

∧m−a
P ∨ × ∧a−1

P ∨ → ∧m−1
P ∨ ∼= A

defines an isomorphism

Wa = ∧m−a
A P ∨ ∼=

(∧a−1
A P ∨

)∨ ∼= ∧a−1
P.

For any g ∈ G, then, the diagram
∧m−a

P ∨
∼=

β∨(g)�−

∧a−1
P

β∨(g)∧−
∧m−a−1

P ∨
∼= ∧a

P

is commutative. We see from Lemma 8.11 that W is generated by W1 if and
only if

β∨(g) � −: ∧m−1
P ∨ ⊗ G∨ → ∧m−2

P ∨

is surjective, if and only if β : P ∨ → G∨ is injective. �
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Proposition 8.13 A representation Wαβ ∈ R̃(K) is simple if and only if the
corresponding point in Z lies over the non-singular locus of SpecR.

Proof Recall that the projection q ′ : Z → SpecR is an isomorphism over

the non-singular locus of SpecR. One checks that the composition Z q ′
−→

SpecR↪→SpecS ∼= F ⊗ G∨ sends a point of Z , viewed as a pair of homo-
morphisms (α,β) as above, to the composition

K → P ⊗ P ∨ −α⊗β−−→ F ⊗ G∨.

Thus a point of Z corresponds to a simple C-module if, and only if, α ⊗ β

has rank n − 1, which occurs exactly when it lies over the non-singular locus
of SpecR. �

9 Explicit minimal presentations

In this section we will write down explicit minimal S-presentations for the
Cohen-Macaulay modules HomR(Ma,Mb). By Theorem 7.17 this amounts
to giving an S-free presentation of Cab. By the involution Cab ↔ Cm+1−b,m+1−a

we see that we may as usual assume a + b ≥ m + 1. Below we will show that
(7.12.1) yields a minimal presentation of Cab provided we drop the projec-
tive Q. Furthermore we give an explicit matrix representation for ρ.

In characteristic zero our presentation can be block diagonalized yielding
a decomposition of HomR(Ma,Mb) into certain maximal Cohen-Macaulay
modules of lower rank.

9.1 A star product

We first recall a well-known formula of Gerstenhaber and Schack. Assume
that ψ1, . . . ,ψn, θ1, . . . , θn are commuting nilpotent derivations on a com-
mutative algebra A containing Q. Then, denoting by m : A ⊗ A → A the
multiplication in A, there is an associated associative product

u ∗ v = m(eψ1⊗θ1+···ψn⊗θn(u ⊗ v))

on A. It is easy to see that this formula generalizes to the graded case.
Applying this formula with A = ∧

S(F ∨ ⊕ G) and

ψi = ∂

∂gi

, θi = −
m∑

j=1

xji

∂

∂λj
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for i = 1, . . . , n, yields a multiplication on A via

u ∗ v = m(e−	(u ⊗ v)) (9.1.1)

where

	 =
∑

i=1,...,n
j=1,...,m

xji

∂

∂gi

⊗ ∂

∂λj

.

Lemma 9.2 The star product on A = ∧
S(F ∨ ⊕ G) gives A the structure of a

quadratic S-algebra generated by the symbols λ1, . . . , λm,g1, . . . , gn subject
to the relations

λk ∗ λl = λkλl = −λlλk = −λl ∗ λk, λk ∗ λk = λ2
k = 0,

gk ∗ gl = gkgl = −glgk = −gl ∗ gk, gk ∗ gk = g2
k = 0,

gk ∗ λl = gkλl + xkl = −λl ∗ gk + xkl.

In other terms, (A,∗) is isomorphic to the Clifford algebra C on F ∨ and G.

We quickly show that in this particular case (9.1.1) is defined over Z and thus
is true in arbitrary characteristic. To this end we have to compute 	t . We find

	t =
∑

xj1ii · · ·xjt it

∂

∂git

· · · ∂

∂gi1

⊗ ∂

∂λj1

· · · ∂

∂λjt

= t !
∑

j1<···<jt

xj1ii · · ·xjt it

∂

∂git

· · · ∂

∂gi1

⊗ ∂

∂λj1

· · · ∂

∂λjt

= t !
∑

i1<···<it
j1<···<jt

[i1 · · · it | j1 · · · jt ] ∂

∂git

· · · ∂

∂gi1

⊗ ∂

∂λj1

· · · ∂

∂λjt

where the peculiar arrangement of indices is to eliminate some signs and
where [i1 · · · it | j1 · · · jt ] is the (unsigned) determinant of the (t × t)-
submatrix of X consisting of the rows indexed i1, . . . , it and columns indexed
j1, . . . , jt .

It follows that if we set

	(t) = 	t

t ! =
∑

i1<···<it
j1<···<jt

[it · · · i1 | jt · · · j1] ∂

∂git

· · · ∂

∂gi1

⊗ ∂

∂λj1

· · · ∂

∂λjt

,
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then the star product on A = ∧
S(F ∨ ⊕ G) is given by

m ◦ (1 − 	 + 	(2) − · · · ).
Return now to the free S-presentation of Cab given by Lemma 7.12. We have
the following simplification of this presentation

Proposition 9.3 If a +b ≥ m+1 then Cab has a minimal S-free presentation
of the form

P1 −ρ−→ P0 → Cab → 0, (9.3.1)

where

• P0 = ⊕
max{a,b}≤k≤m

∧k−a
S G ⊗ ∧k−b

S F ∨.

• P1 = ⊕
0≥l≥max{a−m,b−m}

∧b−l
S G ⊗ ∧a−l

S F ∨

• ρlk =
{

(	(a+b−k−l))lk if a + b − k − l ≥ 0, and

0 otherwise.

Proof Our starting point is the free presentation of Cab given in (7.12.1). It
takes the form

⊕

1>l≥max{a−m,b−n}

∧b−l
S G ⊗ ∧a−l

S F ∨ →
⊕

max{a,b}≤k≤m

∧k−b
S F ∨ ⊗ ∧k−a

S G

(9.3.2)
where ρ is obtained by expanding paths that go first to the left and then to the
right in terms of paths that do the opposite.

Now we borrow some ingredients from the proof of Theorem 7.15. Writing
(9.3.2) in the form

Q ⊕ P1
ρ−→ P0

as in (7.12.1) we deduce from the fact that α1 is shown to be invertible in
(7.15.8) that ρ and (ρ |P1) : P1 → P0 represent the same S-module. This
shows that Cab has a presentation as in (9.3.1). Furthermore the resulting
matrix entry

∧b−l
S G ⊗ ∧a−l

S F ∨ → ∧k−b
S F ∨ ⊗ ∧k−a

S G

can be deduced by working in (
∧

S(F ∨ ⊕ G),∗). We find that it is the com-
position

∧b−l
S G ⊗ ∧a−l

S F ∨ (−1)a+b−k−l	(a+b−k−l)

−−−−−−−−−−−−−−→ ∧k−a
S G ⊗ ∧k−b

S F ∨

(−1)(k−b)(k−a)

−−−−−−−−→ ∧k−b
S F ∨ ⊗ ∧k−a

S G. (9.3.3)
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The presentation given in the statement of the proposition is deduced from
this by pre- and postcomposing with invertible diagonal matrices (with diag-
onal entries in {±1}).

The presentation is minimal if and only if a+b−k− l ≥ 1 for all allowable
k, l. It is enough to test this for k, l maximal, i.e. k = m, l = 0. Then a + b −
k − l = a + b − m which is positive if and only if a + b ≥ m + 1. �

Example 9.4 Assume that m = n = 5, a = b = 4. Then

P0 =
⊕

4≤k≤5

∧k−4
S G ⊗ ∧k−4

S F ∨ = K ⊕ G ⊗ F ∨

P1 =
⊕

0≥l≥−1

∧4−l
S G ⊗ ∧4−l

S F ∨ = ∧5
S G ⊗ ∧5

S F ∨ ⊕ ∧4
S G ⊗ ∧4

S F ∨

and the matrix form of the presentation is
(

	(5) 	(4)

	(4) 	(3)

)

It will be clear to the reader that over Q this presentation can be diagonalized
further. We will say more on this below.

9.5 Characteristic zero

In this section we assume charK = 0. For α,β ≥ 0 with α + β < m, define
Cαβ to be the cokernel of

	(m−α−β) : ∧m−β
S G ⊗ ∧m−α

S F ∨ → ∧α
S G ⊗ ∧β

S F ∨.

Proposition 9.6 Assume charK = 0 and that a + b ≥ m + 1. Then

1. The Cαβ are maximal Cohen-Macaulay R-modules.
2. We have a decomposition

Cab =
⊕

max{a,b}≤p≤m

Cp−a,p−b.

Proof According to Proposition 9.3, the map ρ written as a matrix has the
form

ρ =

⎛

⎜
⎜
⎜
⎝

	(r) 	(r−1) · · ·
	(r−1) · · ·

...
...

· · · 	(s)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

	r

r!
	r−1

(r−1)! · · ·
	r−1

(r−1)! · · ·
...

...

· · · 	s

s!

⎞

⎟
⎟
⎟
⎟
⎠

.

(9.6.1)
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Here 	(r) represents the map from
∧b−l

S G ⊗ ∧a−l
S F ∨ to

∧k−a
S G ⊗ ∧k−b

S F ∨

for k = max{a, b} and l = max{a, b} − m. Thus r = a + b − 2 max{a, b} +
m = −|a − b| + m.

Similarly 	(s) represents the map
∧b−l

S G ⊗∧a−l
S F ∨ to

∧k−a
S G ⊗∧k−b

S F ∨

for k = m, l = 0. Thus s = a + b − m.
It order to manipulate (9.6.1) we write it formally as

ρ =
⎛

⎜
⎝

	r/2 · · · 0
...

. . .
...

0 · · · 	s/2

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

1
r!

1
(r−1)! · · ·

1
(r−1)!

. . .

...
...

· · · 1
s!

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

	r/2 · · · 0
...

. . .
...

0 · · · 	s/2

⎞

⎟
⎠ .

Let A be the middle scalar matrix. According to Lemma 9.9 below we have
A = PDP t where D is a non-singular diagonal matrix and P is upper trian-
gular with 1’s on the diagonal, both with rational entries.

Let P̃ be obtained from P by replacing Pij by 	j−iPij . Then after a bit of
manipulation we obtain the following (non-formal) expression for ρ.

ρ = P̃

⎛

⎜
⎜
⎜
⎜
⎝

Drr
	r

r! 0 · · ·
0

. . .
...

...

· · · Dss
	s

s!

⎞

⎟
⎟
⎟
⎟
⎠

P̃ t .

As P̃ is invertible, this shows that Cab indeed has a decomposition as indi-
cated in the statement of the proposition. If follows that Cαβ is a maximal
Cohen-Macaulay R-module if Cαβ occurs as a summand among one of the
Cab. Given α,β ≥ 0, with α + β < m, we put p = m so that a = m − α,
b = m − β . Then a + b = 2m − (α + β) ≥ m + 1, as required. �

Example 9.7 The following matrix gives the decomposition of Cab for m = 3
(and n arbitrary).

⎛

⎝
C00 C10 C20

C01 C00 ⊕ C11 C10

C02 C01 C00

⎞

⎠ .

The cases a + b ≥ m + 1 = 4 are covered by the proposition. For the other
cases we perform the involution (a, b) �→ (m + 1 − b,m + 1 − a) = (4 −
b,4 − a).

The following lemma is used in the next lemma, which was used in the
above proof.
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Lemma 9.8 Let u ≥ 2t and let A be the (t × t)-matrix over Q

Aij = 1

(u − i − j)!
with 1 ≤ i, j ≤ t . Then detA 	= 0.

Proof Put B = (u − 2)!A. Then B is equal to

⎛

⎜
⎝

1 x x(x − 1) · · · x(x − 1) · · · (x − t + 2)

x x(x − 1) x(x − 1)(x − 2) · · · x(x − 1) · · · (x − t + 1)

x(x − 1) x(x − 1)(x − 2) x(x − 1)(x − 2)(x − 3) · · · x(x − 1) · · · (x − t)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

⎞

⎟
⎠

with x = u − 2. Then

detB = x · x(x − 1) · x(x − 1)(x − 2) · · ·x(x − 1) · · · (x − t + 2)detC

= xt−1(x − 1)t−2 · · · (x − t + 2)detC

with C being equal to

⎛

⎜
⎜
⎜
⎝

1 x x(x − 1) · · · x(x − 1) · · · (x − t + 2)

1 x − 1 (x − 1)(x − 2) · · · (x − 1) · · · (x − t + 1)

1 x − 2 (x − 2)(x − 3) · · · (x − 2) · · · (x − t)
...

...
...

. . .
...

⎞

⎟
⎟
⎟
⎠

.

If we put xi = x − i then C can be written as

⎛

⎜
⎜
⎜
⎝

1 x0 x0(x0 − 1) · · · x0(x0 − 1) · · · (x0 − t + 2)

1 x1 x1(x1 − 1) · · · x1 · · · (x1 − t + 2)

1 x2 x2(x2 − 1) · · · x2 · · · (x2 − t + 2)
...

...
...

. . .
...

⎞

⎟
⎟
⎟
⎠

which using column operations can be turned into a Vandermonde determi-
nant. Hence

detC =
∏

0≤i<j≤t−1

(xj − xi) =
∏

0≤i<j≤t−1

(i − j) 	= 0.

�

Lemma 9.9 Let A be as in the previous lemma. Then A = PDP t with D

diagonal and P upper triangular with 1’s on the diagonal.
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Proof We view A, being a symmetric matrix, as a quadratic form. Diago-
nalizing it in the usual way, starting with the last variable, we see that we
need det(Aij )p≤i,j≤t 	= 0 for p = 1, . . . , t . This follows from the previous
lemma. �

10 Minimal resolutions of the simples in characteristic zero

In this final section we require K to be a field of characteristic zero. Other than
that, we keep the established notation. Our aim in this section is to compute
the Ext-groups among the graded simple modules over the non-commutative
desingularization E, and so obtain the shapes of their minimal graded free
resolutions.

10.1 The main result

We follow the notation of Weyman [24] for Schur modules Lα corresponding
to partitions α = (α1, . . . , αq). Let �(m,n) be the set of Young diagrams
(identified, as usual, with partitions) having at most m rows and n columns.
The conjugate partition α′ is obtained by reflection across the line y = −x.

A convex square of a diagram α ∈ �(m,n) is a square with coordinates
(r, αr) such that αr+1 < αr . For a convex square (r, c) in α, let Rr(α) be
the partition obtained from α by dropping the r th row. Similarly, Cc(α) is
obtained by dropping α’s cth column. For example, we have indicated below
the convex squares for the partition (421).

We obtain three corresponding pairs of partitions (Cc(α),Rr(α)), namely
((321), (21)), ((311), (41)), and ((31), (42)).

For a = 1, . . . ,m let Pa = HomR(Ma,M) be the corresponding graded
projective left E-module and let Sa be the associated graded simple module.
We have:

Theorem 10.2 Assume charK = 0. For simple right E-modules Sa and Sb,
we have

ExttE(Sb, Sa) ∼=
⊕

LCc(α)F ⊗ LRr(α)′G
∨,



R.-O. Buchweitz et al.

where the direct sum is taken over all partitions α ∈ �(m,n) such that |α| =
t + 1, and over all convex squares (r, c) in α such that −a + b = −r + c.

The proof of this theorem will occupy the remainder of the section.

Example 10.3 We can evaluate the sum above for small values of t , obtaining
the first few terms of the resolution of Sa :

Pa

Pa−1(−1) ⊗ F ∨

⊕
Pa+1(−1) ⊗ G

Pa−2(−2) ⊗ S
2F ∨

⊕
Pa−1(−3) ⊗ ∧2

F ∨ ⊗ G

⊕
Pa+1(−3) ⊗ F ∨ ⊗ ∧2

G

⊕
Pa+2(−2) ⊗ S

2G

Pa−3(−3) ⊗ S
3F ∨

⊕
Pa−2(−4) ⊗ L21F

∨ ⊗ G

⊕
Pa−1(−5) ⊗ ∧3

F ∨ ⊗ S
2G

⊕
Pa(−4) ⊗ ∧2

F ∨ ⊗ ∧2
G

⊕
Pa+1(−5) ⊗ S

2F ∨ ⊗ ∧3
G

⊕
Pa+2(−4) ⊗ F ∨ ⊗ L21G

⊕
Pa+3(−3) ⊗ S

3G

where we understand Pi = 0 if i /∈ [1,m]. From this resolution we can read off
the generators and relations of C ∼= E. Of course, the result is consistent with
Remark 7.6. The interpretation of the higher terms in the resolution remains
open.

10.4 Translation into geometry

As a matter of notational convenience in this section, we dualize and work
with the twisted tangent bundle Q := U ∨ = (�1(1))∨ on P = P(F ∨) defined
by exactness of the sequence

0 → OP(−1) → F ∨ ⊗ OP → Q → 0.

With the same argument as in Theorem 6.4 it follows that M′ = p′∗(
∧

Q)

is also a tilting bundle on Z . In particular, we have the exact equivalence of
categories

RHomO Z (p′∗(
∧

Q),−) : Db(coh(Z)) −−−−→ D(E)

since EndO Z (p′∗(
∧

Q)) ∼= EndO Z (T )op = Eop. This equivalence sends each
p′∗(

∧a Q), a = 0, . . . ,m − 1, to the graded projective left E-module Pa+1.

Lemma 10.5 Let u : P → Z be the zero section of the vector bundle
p′ : Z → P (see Sect. 5.2). The object in Db(coh(Z)) corresponding to the
simple module Sa+1 is u∗OP(−a)[a].
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Proof We must show that ExttO Z
(p′∗∧bQ, u∗OP(−a)[a]) is one-dimensional

if t = 0 and a = b, and vanishes otherwise. By adjunction it suffices to prove

ExttOP

(∧bQ, OP(−a)
)

= Ht(P,�b(b − a)) =
{

K if t = a = b, and

0 otherwise.

Computing

�b(b − a) = Mm
b+1(−a − 1) ⊗ |F |∨,

we finish the proof by invoking Theorem 3.9. �

Hence in order to prove Theorem 10.2 it is sufficient to compute

ExttO Z (u∗OP(−b)[b], u∗OP(−a)[a]) = Extt−b+a
O Z

(u∗OP(−b),u∗OP(−a)) .

To this end we prove something more general.

Proposition 10.6 Let U , V be objects in Db(coh(P)). Then

ExttO Z (u∗U , u∗V) =
⊕

s

Extt−s
OP

(∧s
(Q ⊗ G) ⊗P U , V

)
.

Proof We may assume that U is a bounded complex of locally free OP-
modules. The locally free resolution of u∗U as OZ -module is then given by

· · · → ∧2
(Q ⊗ G) ⊗OP

U ⊗OP
OZ → Q ⊗ G ⊗OP

U ⊗OP
OZ

→ U ⊗OP
OZ → 0.

It follows that RH omO Z (U , V) is equal in Db(coh(P)) to the complex

0 → H omOP
(U , V ) → H omOP

(Q ⊗ G ⊗OP
U , V )

→ H omOP

(∧2
(Q ⊗ G) ⊗OP

U , V
)

→ ·· · .

We note however that the center of GL(G) acts with different weights on the terms
of this complex. It follows that the maps are necessarily all zero, whence

RH omO Z (U , V ) =
⊕

s

H omOP

(∧s
(Q ⊗ G) ⊗OP

U , V
)
[−s].

This implies the form claimed. �

Proof of Theorem 10.2 From Lemma 10.5 and Proposition 10.6 we obtain

ExttE(Sb, Sa) = Extt−b+a
O Z

(u∗OP(−b + 1)[b − 1], u∗OP(−a + 1)[a − 1])
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=
⊕

s

H t−b+a−s
(
P,

∧s
(Q ⊗ G)∨(b − a)

)
.

Expanding
∧s

(Q ⊗G) according to the Cauchy formula (this is the first time
we use charK = 0)

∧s
(Q ⊗ G) =

⊕

|α|=s

Lα Q ⊗ Lα′G

we find

ExttE(Sb, Sa) =
⊕

α

H t−b+a−|α|(P, (Lα Q)∨(b − a)) ⊗ Lα′G∨.

To continue, we apply Serre duality:

Ht−b+a−|α|(P, (Lα Q)∨(b − a))

= Hm−1−t+b−a+|α|(P, (Lα Q)(a − b − m))∨ ⊗ |F ∨|.

Using a straightforward application of Bott’s theorem (see the discussion after
the current proof) the direct sum can now be written as

ExttE(Sb, Sa) =
⊕

α<m−a+bβ

l(β−α)=m−t−a+b+|α|

LαF ⊗ Lβ ′G∨ ⊗ |F ∨| (10.6.1)

=
⊕

α<m−a+bβ

c(β−α)=t−|α|+1

LαF ⊗ Lβ ′G∨ ⊗ |F ∨| (10.6.2)

where the notation α <s β means that β − α is a rim hook (or border strip)
of length s ending at the mth row. Recall that a rim hook is a connected skew
tableau not containing any (2 × 2)-squares. We write l(β −α) for the number
of rows in β − α, and c(β − α) for the number of columns.

The formula (10.6.1) can be expressed symmetrically as

ExttE(Sb, Sa) =
⊕

μ∼=c,r ν

t−|ν|=c−1
−a+b=−r+c−1

LμF ⊗ Lν′G∨. (10.6.3)

In this sum μ runs over partitions with at most m − 1 rows and m columns,
while ν runs over those with at most m rows and m−1 columns. The notation
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μ ∼=c,r ν indicates that ν contains an embedded r × c rectangle as shown

with r ≥ 0, c > 0, and μ is obtained by replacing the rectangle by an (r +
1) × (c − 1) rectangle.

It is now easy to obtain the statement of Theorem 10.2 from (10.6.3), com-
pleting the proof. �

10.7

In the previous proof we have used Bott’s theorem for which we provide a
brief reminder to the reader. Let G be a reductive group and let T ⊂ B ⊂ P ⊂
G be respectively a maximal torus T , a Borel subgroup B and a parabolic
subgroup P . For a dominant weight θ ∈ X(T ) let LG

θ be the corresponding
simple G-representation.

Taking fibers in [P ] ∈ G/P provides an equivalence between rational P -
representations and G-equivariant quasi-coherent sheaves on G/P . Denote
this equivalence by ?̃. Let H = P/ radP be the reductive part of P and let
LH

χ be the simple H -representation associated to a H -dominant weight χ ∈
X(T ). We view LH

χ as a P -representation.
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Bott’s theorem computes the cohomology of L̃H
χ as follows

Hi
(
G/P, L̃H

χ

) =
⎧
⎨

⎩

LG
θ

if there exists a (necessarily unique) w ∈ W such
that θ = w · ξ is G-dominant and l(w) = i

0 otherwise,
(10.7.1)

where W is the Weyl group of G and where w · ξ = w(ξ + ρ) − ρ is the
twisted Weyl group action, with ρ as usual being half the sum of the positive
roots.

Now in the setting of this paper choose an identification F ∨ = Km and
let G = GLm(K). Then P(F ∨) = G/P where P is the stabilizer of the point
p = (0, . . . ,0,1). Let T = {diag(t1, . . . , tm)} ⊂ G be the diagonal torus. We
view t1, . . . , tm as characters of T .

The roots of G are ti t
−1
j , i 	= j , with the positive roots being those for

which i > j (in this setting the negative roots are the non-zero weights of
Lie(B)). The G-dominant weights are of the form t

α1
1 · · · tαm

m with α1 ≥ · · · ≥
αm. Thus the dominant weights α are partitions with at most m rows and one
has LG

α = LαF ∨. The (twisted) action of the Weyl group is generated by the
reflections

si : t
αi

i t
αi+1
i+1 �→ t

αi+1−1
i t

αi+1
i+1 . (10.7.2)

The G-equivariant exact sequence

0 → OP(−1) → F ∨ ⊗ OP → Q → 0

yields a P -equivariant exact sequence

0 → OP(−1)p → F ∨ → Qp → 0

with dim OP(−1)p = 1, dim Qp = m − 1. Such an exact sequence is unique
and must be isomorphic to

0 → K → Km → Km−1 → 0

where the first non-trivial map is the injection into the last factor and the sec-
ond non-trivial map is the projection onto the first m − 1 factors. This means
that OP(−1) = L̃H

tm
, Q = L̃H

t1
where H = GLm−1(K) × GL1(K). Looking

at the stalk in p we also compute that for a partition α with at most m − 1
rows we have Lα Q(−s) = L̃H

t
α1
1 ···tαm−1

m−1 t sm
. Hence to compute the cohomology

of Lα Q(−s) using (10.7.1) we must try to flatten the factor t sm in the weight
t
α1
1 · · · tαm−1

m−1 t sm using the twisted Weyl group action (10.7.2). We see that this
is only possible if there is a partition β with m rows such that β − α is a
rim hook with s boxes and the number of reflections we need in that case
is one less than the number of rows in β − α. This completes the derivation
of (10.6.1).
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20. Szendrői, B.: Non-commutative Donaldson-Thomas invariants and the conifold. Geom.
Topol. 12(2), 1171–1202 (2008). MR2403807

21. Van den Bergh, M.: Non-commutative crepant resolutions. In: The Legacy of Niels Henrik
Abel, pp. 749–770. Springer, Berlin (2004). MR2077594

22. Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J.
122(3), 423–455 (2004). MR2057015

23. Vetter, U.: Generic maps revised. Commun. Algebra 20(9), 2663–2684 (1992).
MR1176833

24. Weyman, J.: Cohomology of Vector Bundles and Syzygies. Cambridge Tracts in Mathe-
matics, vol. 149. Cambridge University Press, Cambridge (2003). MR1988690


	Non-commutative desingularization of determinantal varieties I
	Introduction
	Notation
	Direct images of  between bundles of differential forms
	Notation
	The tautological Koszul complex
	The projective tautological Koszul complex
	Differential forms
	The canonical (co-)resolutions of the differential forms
	The higher direct images
	Visualization

	Interlude: projective resolutions from sparse spectral sequences
	Categorical notation
	Assumptions

	Direct images on the determinantal variety
	The generic morphism
	The incidence variety and its resolution

	From algebra to geometry
	The non-commutative desingularization
	A tilting bundle

	The quiverized Clifford algebra
	Notation
	Quivers
	Quiverization
	The doubled Beilinson quiver
	A Clifford action on M
	An S-presentation for C
	A Clifford action on the tilting bundle

	The commutative desingularization as a moduli space
	Quiver representations
	Baby case
	Representations of the quiverized Clifford algebra
	Simple representations

	Explicit minimal presentations
	A star product
	Characteristic zero

	Minimal resolutions of the simples in characteristic zero
	The main result
	Translation into geometry

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


