MAT 733 - HOMEWORK 5

DUE ON WEDNESDAY 16 APRIL

All rings are commutative with 1.

1. (E. Noether) Let $k \subseteq A$ be a ring extension where k is a field. Assume $a_{1}, \ldots, a_{n} \in A$ and set $S=k\left[a_{1}, \ldots, a_{n}\right]$. Let G be a finite group of ring automorphisms of S which fix k. Let T be the subring of S consisting of all elements fixed by all the automorphisms in G. Prove that T is a finitely generated k-algebra, and is in particular Noetherian.
(Hints: let x be an indeterminate over k and for $i=1, \ldots, n$ let

$$
\begin{aligned}
f_{i}(x) & =\prod_{\sigma \in G} x-\sigma\left(a_{i}\right) \\
& =x^{m}+p_{i 1} x^{m-1}+\cdots+p_{i m}
\end{aligned}
$$

where $m=|G|$. Set $R=k\left[p_{11}, \ldots, p_{n m}\right]$. Then R is Noetherian, $R \subseteq T \subseteq S$, and S is integral over R (show these things). Conclude that T is a finitely generated R-module.)
2. Let R be a Noetherian ring, M a finitely generated R-module, and N an arbitrary R module. Let S be a flat R-algebra. Prove that

$$
\operatorname{Hom}_{R}(M, N) \otimes_{R} S=\operatorname{Hom}_{S}\left(M \otimes_{R} S, N \otimes_{R} S\right) .
$$

(Hint: Define an S-linear map from left to right by $f \otimes s \mapsto s \cdot\left(f \otimes 1_{S}\right)$). Prove it is an isomorphism for M free of finite rank, and then apply both sides (as functors in M) to an exact sequence $R^{m} \longrightarrow R^{n} \longrightarrow M \longrightarrow 0$.)
3. Let R, M, N be as above, and $\mathfrak{p} \in \operatorname{Spec} R$. Prove that

$$
\operatorname{Hom}_{R}(M, N)_{\mathfrak{p}}=\operatorname{Hom}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}, N_{\mathfrak{p}}\right)
$$

4. Let (R, \mathfrak{m}) be a one-dimensional Noetherian local ring and assume $\mathfrak{m}=(x)$ is a principal ideal. Prove that R is a domain (and hence a DVR). (Hint: KIT.)
5. Let R be a domain. Prove that R is a valuation ring if and only if the ideals of R are linearly ordered: for every pair of ideals I, J, either $I \subseteq J$ or $J \subseteq I$.
6. (Bonus: There is part of this I don't know how to do.) Let $S=k[x, y]$, where k is a field.
(a) Put the lexicographic ordering on $\mathbb{R} \times \mathbb{R}$, that is, $(r, s)>(t, u)$ means either $r>s$ or $r=s$ and $t>u$. Define $v_{1}: S \longrightarrow(\mathbb{R} \times \mathbb{R}) \cup\{\infty\}$ first on monomials by $v_{1}\left(x^{i} y^{j}\right)=(i, j)$; extend to arbitrary $0 \neq f \in S$ by letting $v_{1}(f)$ be the minimum value of v_{1} on its monomials, and set $v_{1}(0)=\infty$. Observe that v_{1} is multiplicative, so extends to a function $v_{1}: k(x, y) \longrightarrow(\mathbb{R} \times \mathbb{R}) \cup\{\infty\}$. Prove that v_{1} is a valuation, and determine the valuation group and valuation ring.
(b) Put the usual ordering on \mathbb{R}. For a nonzero polynomial $f \in S$, write $f=\sum_{i, j} \alpha_{i j} x^{i} y^{j}$, and define $v_{2}: S \longrightarrow \mathbb{R} \cup\{\infty\}$ by $v_{2}(f)=\min \{i+j \sqrt{2}\}$ for $f \neq 0$ and $v_{2}(0)=\infty$. Extend v_{2} to $k(x, y)$ as above, prove that v_{2} is a valuation, and determine the valuation group and valuation ring.
