MAT 534 — HOMEWORK 7

DUE ON FRIDAY 7 MARCH

All these problems are from Chapter 8.

- **1.** (#1) Prove that the external direct product of any finite number of groups is a group.
- **2.** (#4) Show that $G \oplus H$ is Abelian if and only if both *G* and *H* are Abelian.
- **3.** (#5) Is $\mathbb{Z} \oplus \mathbb{Z}$ cyclic? Justify.
- **4.** (#6) Prove that $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ is *not* isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_4$, by comparing orders of elements.
- **5.** (#7) Prove that $G \oplus H \cong H \oplus G$. (You should write down an explicit isomorphism.)
- **6.** (#13) For each integer n > 1, give examples of two non-isomorphic groups of order n^2 . Justify.
- 7. (#14) The dihedral group D_n of order 2n $(n \ge 3)$ has a subgroup of n rotations, and a subgroup of order 2. (In fact there are several subgroups of order 2 pick one.) Explain why D_n is not isomorphic to the external direct product of two such subgroups.

Also suggested, but not to hand in:

- (A) (#17) If $G \oplus H$ is cyclic, prove that G and H are cyclic. Is the converse true?
- (B) (#3, improved) Let G and G' be groups, and let $H \leq G$ and $H' \leq G'$ be subgroups. Prove that $H \oplus H'$ is isomorphic to a subgroup of $G \oplus G'$. In the special case $H' = \{e'\}$ is the trivial subgroup of G', prove that $H \cong H \oplus \{e'\}$.
- (C) (#28) Find a subgroup of $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ that is not of the form $H \oplus K$ for two subgroups $H \leq \mathbb{Z}_4$ and $K \leq \mathbb{Z}_2$.