This exam has 7 problems on 8 pages.
Name: \qquad
Show all work for full credit.
Score:
Put a box around your answer.

1. (12 pts) The following data is gathered by an experimenter.

x_{1}	0	1	-1	1
x_{2}	2	1	1	-2
y	2	0	2	-3

Find the linear function $y=a x_{1}+b x_{2}$ that best fits this data.
2. (24 pts) Find the $1-, 2-$, and ∞ - norms of the following vectors.
(a) $(0,-1,2,-2,4)^{T}$
(b) $(2,-1, i, 3-2 i)^{T}$
3. (a) (9 pts$)$ Find the $1-, \infty-$, and Frobenius norms of the matrix.

$$
A=\left(\begin{array}{lll}
3 & 0 & -1 \\
2 & 2 & -2 \\
0 & 1 & -2
\end{array}\right)
$$

(b) (6 pts) Find the 2-norm of the matrix A.

$$
A=\left(\begin{array}{cc}
2 & 0 \\
-1 & \sqrt{3}
\end{array}\right)
$$

4. (16 pts) Are the following matrices symmetric, hermitian, orthogonal, unitary? (Answer yes or no for each property.)
(a) $\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \\ -1 & 0 & 1\end{array}\right)$
(b) $\frac{1}{\sqrt{3}}\left(\begin{array}{cc}1+i & i \\ i & -i\end{array}\right)$
5. Consider the following orthogonal vectors in \mathbb{C}^{3}.

$$
u_{1}=\left(\begin{array}{l}
1 \\
i \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{l}
i \\
1 \\
0
\end{array}\right)
$$

(a) (5 pts) Find a third vector u_{3} such that $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis.
(b) (6 pts) Write $w=(1,1,1)^{T}$ as a linear combination of u_{1}, u_{2}, u_{3}.
6. (12 pts) Find a QR decomposition for the matrix. (You may use either the "classical" or "modified" approach.)

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & -1 & 2 \\
1 & -1 & 2 \\
-1 & 1 & 1
\end{array}\right)
$$

7. $(10 \mathrm{pts})$ Let $u=(3,0,4)^{T}$.
(a) Write down the elementary reflector corresponding to u.
(b) Find the projection of $(2,-1,4)^{T}$ onto u^{\perp}.
