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What is a Resolution of Singularities?

Suppose X is an algebraic variety, meaning the solution set of a
system of polynomial equations. In general, X might have
singularities, or non-smooth points, which prevent it from being a
manifold.

Definition (Ver. 1)

A resolution of singularities of X is a parametrization of X by the
points of a manifold.
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Example: the cusp

Consider the cusp C : {x 3 = y2}.

We can parametrize C by the
points of a line: t 7→ (t2, t3).

Not only is this a parametrization,
it’s a smooth map (almost) ev-
erywhere, in the sense that the
derivatives don’t simultaneously
vanish.

Leuschke, Non-commutative desingularizations 5/34



Another way to think of resolving this singularity:

Technically speaking, this is the parametrization t 7→ (t2, t3, t).
(This corresponds to the “blowup algebras” coming later.)
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More precisely...

Definition (Ver. 2)

A resolution of singularities is a map of varieties π : X̃ −→ X
where

I X̃ is a manifold;

I π is a surjective map;

I π is differentiable, and almost everywhere a diffeomorphism;

I π is proper, in the sense that π−1(compact) is compact.
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Definition (Ver. 3, Algebra)

Let R be an integral domain with quotient field Q . A resolution of
singularities of R is an intermediate ring R ⊆ A ⊆ Q such that A
is regular.

The condition that A is regular means precisely that A corresponds
to a smooth variety. Generally speaking, we can think of A as a
polynomial (or power series) ring over C.

An extension of domains R ⊆ A that share the same quotient field
is called birational. Geometrically, it means that the corresponding
varieties have the same field of rational functions.
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The cusp again

The cusp C corresponds to the ring R = C[x , y ]/(x 3 − y2). Using
the parametrization we’ve already seen, this is isomorphic to
C[t2, t3] with quotient field C(t), the full field of rational
functions. We can thus take

A = C[t ] .

In this case, all we did was “normalize”. More on that later.
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Whitney Umbrella

Let W : {x 2 = y2z}, or equivalently

R = C[x , y , z ]/(x 2 − y2z ) .

This time it’s much less obvious (though
easy to check) that we can parametrize
W by

(s, t) 7→ (s, t , s2)

or with

A = R
[
x
y

]
= C

[
x
y
, y , z

]
/

((
x
y

)2

− z

)
.
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An important change to the algebraic definition

In general, the requirement that A ⊆ Q is too strong. We need to
allow blowup algebras

A = R[It ]

for ideals I of R. Geometrically, these correspond to “gluing
together” birational extensions, though the result is no longer
birational. In particular, they are almost never finitely generated as
R-modules.

A blowup algebra should be considered smooth if its constituent
pieces are — but R[It ] may not be a polynomial ring itself.
Instead, it is smooth “on the punctured spectrum.”
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Why resolve singularities?

Nonsingular varieties are much easier to work with than singular
ones, and the definition is built to transmit the information from
the resolution to the resolved variety.

Many technical results in algebraic geometry, for example on
vanishing of cohomology (Kodaira Vanishing, Kawamata-Viehweg
Vanishing, . . . ) are proved in exactly this way.

Other examples come from differential equations, dynamical
sysytems, etc.
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Can it be done? Yes, usually

Curves
Normalization (a.k.a. integral closure) resolves singularities of
curves. Known to Italian geometers in the 19th century; proven
carefully by (at least) Kronecker and Max Noether.

In this case no blowup algebras are needed; one really can find
A ⊆ Q .

Surfaces defined over C
Walker (1936) and Zariski (1939). Now blowup algebras are really
required.

3-folds defined over C
Zariski (1944)

Surfaces or 3-folds in char. p

Abhyankar (1956, 1966)
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Can it be done?

Any variety over C
Hironaka (1964)

The proof is 200 pages, and consists (among other things) of 14
nested inductions. It’s been called the most complicated
mathematical work in history.

The proof has been streamlined somewhat since then, notably by
Villamayor, Bierstone–Milman, Encinas–Hauser. It’s also been
made constructive, which the original proof was not. Still, it
remains difficult.
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Some petty complaints

Constructing a resolution of singularities of a given variety . . .

I is generally very complicated.

I uses a great deal of geometric machinery.

I introduces blowup algebras and their punctured spectra, which
are difficult to analyze.

I can’t be done (yet) over fields of prime characteristic or the
integers.
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Naive hope
Is there a construction that has the same applications, but . . .

I avoids the blowup algebras, possibly sticking to module-finite
R-algebras?

I works over any ground ring?

No. For example, the “trumpet”C[x , y , z ]/(x 3 + y2 + z 2) has no
regular finite extensions inside its quotient field.
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A potential solution: allow non-commutative A

This also implicates a change in philosophy: we’ll focus on
homological aspects of the modules over A, rather than
ring-theoretic properties.

In particular, we’ll think of two rings as “the same” if they have
equivalent module categories, specifically if they’re Morita
equivalent:

A 'Morita B .

In particular this holds if

B ∼= EndA(An)

for some free A-module An .
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The first explicit appearance of non-commutative resolutions seems
to have been in theoretical physics (!).

Resolution of Stringy Singularities by Non-commutative
Algebras (Berenstein-Leigh ’01)

“Our intention in this paper is to make a general proposal for

‘resolving’ singularities within non-commutative geometry and to

understand the D-branes on these spaces. [. . . ] The algebraic

geometry of this commutative algebra will be identified with the

target space where closed strings propagate, and the algebraic

geometry of the non-commutative algebras will give the resolution

of those singularities. In this sense a commutative singularity can

be made smooth in a non-commutative sense.”
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Birationality and regularity

Problem
It makes no sense to insist that A ⊆ Q anymore, or even that A is
gotten by gluing together such rings, as that would force A to be
commutative.

Solution
We force A to sit inside some ring Morita equivalent to Q . Since
Q is a field, this means

A ⊆ Matn(Q)

for some n.

We also now insist A is finitely generated over R.
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Birationality and Regularity II

Question
What does “regular” or “smooth” mean for non-commutative rings?

Solution
Translating into homological algebra, this should mean finite global
dimension, every module having finite projective dimension.

Warning: This condition is much weaker for non-commutative
rings than for commutative ones. We’ll need to impose extra
conditions to have a functional theory.

In particular, we should at least assume A is homologically
homogeneous: every simple A-module has the same projective
dimension. Even this isn’t quite enough.

Leuschke, Non-commutative desingularizations 20/34



Crepant resolutions

The most hospitable resolutions of singularities are the crepant
ones. A resolution π : X̃ −→ X is crepant if the canonical bundles
are isomorphic:

π∗ωX = ω eX .

This has good technical implications for the transmission of
information from X̃ to X .

Existence of a crepant resolution is quite strong: among other
things, it forces X to have rational singularities, and the
corresponding ring R to be a Gorenstein normal domain.
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Finally, the definition

Definition (Van den Bergh)

Let R be a Gorenstein normal domain. A non-commutative
crepant resolution of singularities of R is a homologically
homogeneous ring Λ of the form

Λ = EndR(M )

for M a finitely generated reflexive R-module.

Equivalently, Λ = EndR(M ) is a non-commutative crepant
resolution if

I Λ has finite global dimension;

I Λ is maximal Cohen–Macaulay as an R-module.
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Three justifying theorems

Theorem (Stafford-Van den Bergh, ’06)

If R has characteristic zero and possesses a non-commutative
crepant resolution of singularities, then it has (at worst) rational
singularities.

Theorem (Van den Bergh, ’04)

Assume that dim R = 3 and Spec R has terminal singularities.
Then R has a non-commutative crepant resolution if and only if it
has a commutative crepant resolution.

Corollary (Conjecture of Bondal and Orlov)

In the above situation, any two commutative crepant resolutions
have equivalent derived categories.
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The generic determinant

Theorem (Buchweitz-Leuschke-Van den Bergh)

Let X = (xij ) be the generic square matrix of size n ≥ 2,
S = k [X ], and R = S/det X the generic determinantal
hypersurface. Then R has a non-commutative crepant resolution.
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Construction

Consider X as a map between two free S -modules of rank n:

0 // G X // F // M1 = cok X // 0 .

Take exterior powers:

0 // ∧k G
Vk X // ∧k F // Mk

// 0

for k = 1, . . . ,n (in particular Mn
∼= S/det X = R).

Fact
Each Mk is a maximal Cohen–Macaulay R-module of rank

(
n
k

)
.

This follows from the fact that
∧k X and its “adjoint”

∧n−k XT

form a matrix factorization of det X .
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Generic determinant, precise version

Theorem
Set

M =
⊕
k

Mk =
⊕
k

cok

(
k∧

X

)
.

and E = EndR(M ). Then

I E is MCM over R;

I Extodd
R (M ,M ) = 0;

I E has finite global dimension; and

I Db(mod E) ∼= Db(cohZ), where Z is the Springer
desingularization of Spec R.

Leuschke, Non-commutative desingularizations 26/34



How to describe E = EndR(M )?

I The projectors ei : M −→−→ Mi ↪→ M are idempotent
endomorphisms.

There are also some “obvious” elements of HomR(Mi ,Mj ) with
i 6= j .

Such a homomorphism is a pair (α, β) making

0 // ∧i G
Vi X //

α

��

∧i F //

β
��

Mi
//

��

0

0 // ∧j G
Vj X // ∧j F // Mj // 0

commute.
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I Each element f ∗ ∈ F∗ defines a contraction

∂f ∗ :
i∧
F −→

i−1∧
F

which lifts to give a degree −1 endomorphism Ma −→ Ma−1.

I Each element g ∈ G defines a multiplication

µg :
i∧
G −→

i+1∧
G

which gives a degree +1 endomorphism Ma −→ Ma+1.

Note that there are relations among the ∂f ∗ , µg , and ei , notably

µg∂f ∗ + ∂f ∗µg = f ∗(X (g)) ∈ S .
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The “quiverized Clifford Algebra”

Theorem

E ∼= S 〈e1, . . . , en ; u1, . . . , un ; v1, . . . , vn〉/J ,

where J is the ideal generated by the relations

I eaeb = δabea ,
∑

ea = 1
I viea = ea+1vi

I uiea = ea−1ui

I uiuj + ujui = u2
i = vivj + vj vi = v2

i = 0
I uivj + vjui = xij (the “Clifford relation”).
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Why “quiverized”?

We can realize E as the path algebra of a quiver with n vertices
corresponding to the ea :

1 v1
33

...
vn

33

2 v1
22

...
vn

22

...
u1ss

unss

· · · · · ·

...
u1ss

unss

v1
33

...
vn

33

n

...
u1rr

unrr

with relations like those defining C.
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Idea of the Proof

The Springer desingularization comes equipped with projections to
Spec R and P = Pn−1:

Z t�

j

&&NNNNNNNNNNNN
p′

  
q ′

��

Spec S × P p //

q

��

P

Spec R � � // Spec S
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Proposition

Mk = Rq∗p∗(Ωk−1
P (k)) , that is, the direct image of p∗Ωk−1(k) is

Mk and the higher direct images vanish.

This allows us to get an explicit resolution for each HomR(Mi ,Mj )
and observe that they are MCM. The vanishing further implies the
equivalence of derived categories between E and Z, which forces E
to have finite global dimension.
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Maximal Minors

Theorem
Let X = (xij ) be the generic m × n matrix with n ≥ m,
S = k [X ], and Im(X ) the ideal of maximal minors of X . Then
R = S/Im(X ) has a non-commutative desingularization.

In this case, E is isomorphic to the path algebra of the quiver

1 v1
33

...
vn

33

2 v1
22

...
vn

22

...
u1ss

umss

· · · · · ·

...
u1ss

umss

v1
33

...
vn

33

m

...
u1rr

umrr

with relations

uiuj + ujui = 0 = u2
i ;

vivj + vj vi = 0 = v2
i ;

uk (uivj + vjui) = (uivj + vjui)uk ; and

vl (uivj + vjui) = (uivj + vjui)vl .
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Thank you!
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