Non-commutative desingularization of the generic determinant joint work with R.-O. Buchweitz and M. Van den Bergh

Graham J. Leuschke

Syracuse University

7 October 2007

An Extended Example

Fix a field k, and let S = k[x, y, u, v]. Consider

$$R = S/(xy - uv)$$
 and $X = \operatorname{Spec} R$,

a hypersurface in Spec $S \cong M_2(k)$.

X has "canonical" resolution(s) of singularities

$$\mathcal{Z} = \left\{ \left(\Phi, \begin{bmatrix} a \\ b \end{bmatrix} \right) \in M_2(k) imes \mathbb{P}^1 : \Phi \begin{bmatrix} a \\ b \end{bmatrix} = 0
ight\}$$

and

$$\mathcal{Z}' = \left\{ \left(\Phi, \begin{bmatrix} a \\ b \end{bmatrix} \right) \in \mathit{M}_2(k) \times \mathbb{P}^1 \; : \; \mathsf{image} \, \Phi \subseteq \mathsf{span} \, \begin{bmatrix} a \\ b \end{bmatrix} \right\} \, ,$$

sometimes called the Springer resolutions.

Some complaints about $\mathcal Z$ and $\mathcal Z'$

- ▶ They're canonical, but canonically asymmetric.
- ▶ We leave our original category, not once but twice.

A proposed replacement for $\mathcal Z$ and $\mathcal Z'$

Let I = (x, u), a height-one prime of R, and set

$$\mathcal{E} = \operatorname{End}_{R}(R \oplus I)$$

$$\cong \begin{pmatrix} R & I \\ I^{-1} & R \end{pmatrix}$$

where $I^{-1} = \operatorname{Hom}_R(I, R) \cong (x, v)$.

Note that \mathcal{Z} is the blowup of X at I, while \mathcal{Z}' is the blowup at I^{-1} .

Some observations about $\mathcal{E} = \operatorname{End}_R(R \oplus I)$

- $\triangleright \mathcal{E}$ is non-commutative!
- \triangleright \mathcal{E} is manifestly "symmetric", since I is invertible.
- $ightharpoonup \mathcal{E}$ is a finitely generated R-module ("proper")
- ▶ gl. dim $\mathcal{E} = 3$ ("smooth")
- ▶ $\mathcal{E} \otimes_R K \cong M_2(K)$ is Morita equivalent to the quotient field K of R ("birational")
- ${\cal E}$ is maximal Cohen–Macaulay as an R-module. More to the point, ${\rm Ext}^i_R({\cal E},R)=0$ for i>0. It follows (since R is Gorenstein) that ${\cal E}$ is its own dualizing module, so in particular ${\cal E}\otimes_R\omega_R=\omega_{\cal E}$. ("crepant")

Definition (Van den Bergh)

Let R be a Gorenstein local normal domain. A non-commutative crepant resolution of R is an R-algebra $\mathcal{E} = \operatorname{End}_R(M)$ such that

- ▶ *M* is a reflexive *R*-module
- ▶ gl. dim $\mathcal{E} < \infty$.
- \triangleright \mathcal{E} is a MCM R-module

Remark

Van den Bergh and Stafford have recently showed that existence of such an \mathcal{E} implies that R has at worst rational singularities (in characteristic zero).

Another source of examples: the McKay correspondence. If $G \subseteq SL_n(k)$ is a finite group acting on $S = k[x_1, \ldots, x_n]$ with invariant ring $R = S^G$, then $End_R(S) \cong S\#G$ is a non-commutative crepant resolution of R.

Main Theorem

Let $X = (x_{ij})$ be the generic square matrix of size $n \ge 2$, S = k[X], and $R = S/\det X$. Then R has a non-commutative crepant resolution.

Construction

Consider X as a map between two free S-modules of rank n:

$$0 \longrightarrow \mathcal{G} \xrightarrow{X} \mathcal{F} \longrightarrow M_1 = \operatorname{cok} X \longrightarrow 0.$$

Take exterior powers:

$$0 \longrightarrow \bigwedge^k \mathcal{G} \xrightarrow{\bigwedge^k X} \bigwedge^k \mathcal{F} \longrightarrow M_k \longrightarrow 0$$

for k = 1, ..., n (in particular $M_n = R$).

Fact

Each M_k is a maximal Cohen–Macaulay R-module of rank $\binom{n}{k}$. This follows from the fact that $\bigwedge^k X$ and its "adjoint" $\bigwedge^{n-k} X^T$ form a matrix factorization of det X.

Main Theorem, precise version

Set

$$M = \bigoplus_{k} M_{k} = \bigoplus_{k} \operatorname{cok} \left(\bigwedge^{k} X \right) .$$

Then

- ightharpoonup End_R(M) is MCM over R;
- $ightharpoonup \operatorname{Ext}_R^{odd}(M,M)=0;$
- ightharpoonup End_R(M) has finite global dimension; and
- ▶ $D^b(\text{mod End}_R(M)) \cong D^b(\text{coh } \mathcal{Z})$, where \mathcal{Z} is the Springer desingularization of Spec R. (Note that this exists for all n, defined analogously to the n=2 case.)

How to describe $\operatorname{End}_R(M)$?

► The projectors e_i : $M \longrightarrow M_i \hookrightarrow M$ are idempotent endomorphisms.

There are also some "obvious" elements of $\operatorname{Hom}_R(M_i, M_j)$ with $i \neq j$.

Such a homomorphism is a pair (α, β) making

$$0 \longrightarrow \bigwedge^{i} \mathcal{G} \xrightarrow{\bigwedge^{i} X} \bigwedge^{i} \mathcal{F} \longrightarrow M_{i} \longrightarrow 0$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\beta} \qquad \qquad \downarrow^{$$

commute.

▶ Each element $f^* \in \mathcal{F}^*$ defines a contraction

$$\partial_{f^*}: \bigwedge^i \mathcal{F} \longrightarrow \bigwedge^{i-1} \mathcal{F}$$

which lifts to give a degree -1 endomorphism $M \longrightarrow M$.

▶ Each element $g \in \mathcal{G}$ defines a multiplication

$$\mu_{\mathbf{g}} : \bigwedge^{i} \mathcal{G} \longrightarrow \bigwedge^{i+1} \mathcal{G}$$

which gives a degree +1 endomorphism $M \longrightarrow M$.

Note that there are relations among the ∂_{f^*} , μ_g , and e_i , notably

$$\mu_g \partial_{f^*} + \partial_{f^*} \mu_g = f^*(X(g)) \in S.$$

Define the "quiverized Clifford Algebra"

$$\mathcal{C} := S\langle e_1, \ldots, e_n; u_1, \ldots, u_n; v_1, \ldots, v_n \rangle / \mathcal{J},$$

where ${\cal J}$ is the ideal generated by the relations

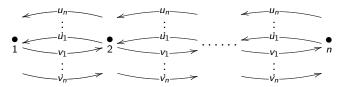
- $ightharpoonup e_a e_b = \delta_{ab} e_a, \ \sum e_a = 1$
- $\triangleright v_i e_a = e_{a+1} v_i$
- $\triangleright u_i e_a = e_{a-1} u_i$
- $u_i u_j + u_j u_i = u_i^2 = v_i v_j + v_j v_i = v_i^2 = 0$
- $u_i v_j + v_j u_i = x_{ij}$ (the "Clifford relation").

Theorem

$$\mathcal{E}\cong\mathcal{C}$$
.

Why "quiverized"?

We can realize C as the path algebra of a quiver with vertices corresponding to the e_a :



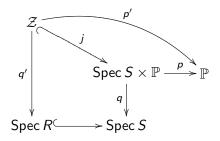
with relations like those defining C.

Proposition

The Springer desingularization \mathcal{Z} is a moduli space of representations of this quiver, subject to a stability condition.

Idea of the Proof.

The Springer desingularization comes equipped with projections to Spec R and $\mathbb{P} = \mathbb{P}^{n-1}$:



Proposition

 $M_k = \mathcal{R}q_*p^*(\Omega_{\mathbb{P}}^{k-1}(k))$, that is, the direct image of $p^*\Omega^{k-1}(k)$ is M_k and the higher direct images vanish.

This allows us to get an explicit resolution for each $\operatorname{Hom}_R(M_i, M_j)$ and observe that they are MCM. The vanishing further implies the equivalence of derived categories between $\mathcal E$ and $\mathcal Z$, which forces $\mathcal E$ to have finite global dimension.