Factoring the Adjoint and Maximal CM Modules GRAHAM J. LEUSCHKE (joint work with Ragnar-Olaf Buchweitz)

Let k be a field and $X = (x_{ij})$ the generic $(n \times n)$ -matrix over k. Put $S = k[x_{ij}]$. Let adj(X) denote the "classical adjoint" of X, whose entries are the appropriately signed submaximal minors (or cofactors) of X, and which is characterized by the matrix equation

(1)
$$X \operatorname{adj}(X) = \det(X) \cdot \operatorname{id}_n = \operatorname{adj}(X) X$$

Our motivating question is due to G.M. Bergman [1], who asked whether the equation (1), viewed as a factorization of the diagonal matrix $det(X) \cdot id_n$, can be refined by writing adj(X) = YZ for a pair of noninvertible $(n \times n)$ -matrices Y and Z over S. He gave a partial answer to the question:

Theorem (Bergman). Let k be an algebraically closed field of characteristic zero.

- (a) For n odd, there are no nontrivial factorizations of $\operatorname{adj}(X)$.
- (b) For n even, any factorization $\operatorname{adj}(X) = YZ$ must have either det $Y = \det X$ or det $Z = \det X$, up to units of S.

We translate Bergman's question into commutative algebraic terms, as follows: The pair $(X, \operatorname{adj}(X))$ forms a matrix factorization of det $X \in S$, in the sense of Eisenbud [3]. In particular, $M := \operatorname{cok} \operatorname{adj}(X)$ and $L := \operatorname{cok} X$ are maximal Cohen-Macaulay (MCM) modules over the hypersurface $R := S/(\det X)$. The existence of a nontrivial factorization $\operatorname{adj}(X) = YZ$ is equivalent to a nonsplit short exact sequence

$$0 \longrightarrow \operatorname{cok} Z \longrightarrow M \longrightarrow \operatorname{cok} Y \longrightarrow 0,$$

of maximal Cohen-Macaulay modules over R. The MCM R-modules are not particularly well understood, but it follows from Bruns' calculation of the divisor class group [2] that the only MCM R-modules of rank one, up to isomorphism, are $L = \operatorname{cok} X$ and the dual $L^{\vee} := \operatorname{cok} X^T$. This translation already allows us to recover Bergman's result for n = 3 and any UFD coefficient ring k:

Proposition. Let $X = (x_{ij})$ be the generic (3×3) -matrix over a unique factorization domain k. Then there are no nontrivial factorizations of $\operatorname{adj}(X)$ over $k[x_{ij}]$.

For $n \ge 4$, we consider the case det $Y = u \det X$, u a unit in S. This corresponds precisely to assuming that either $\operatorname{cok} Y \cong L$ or $\operatorname{cok} Y \cong L^{\vee}$. A pushout construction reduces the open case of Bergman's result to the problem of classifying all extensions

$$0 \longrightarrow \operatorname{cok} Y \longrightarrow Q \longrightarrow L \longrightarrow 0\,,$$

where either $\operatorname{cok} Y \cong L$ or $\operatorname{cok} Y \cong L^{\vee}$. In other words, we must compute $\operatorname{Ext}_{R}^{1}(L, L)$ and $\operatorname{Ext}_{R}^{1}(L, L^{\vee})$. The first case follows from a recent result of R. Ile [5]:

Theorem (IIe). $\operatorname{Ext}_{R}^{1}(L, L) = 0.$

On the other hand, computer calculations [4] reveal that $\operatorname{Ext}^{1}_{R}(L, L^{\vee}) \neq 0$. To better understand the structure of $\operatorname{Ext}^{1}_{R}(L, L^{\vee})$, we consider first $\operatorname{Hom}_{R}(M, L^{\vee})$.

Theorem. The R-module $\operatorname{Hom}_R(M, L^{\vee})$ is maximal Cohen-Macaulay of rank n-1, generated by $\binom{n}{2}$ elements. Indeed, $\operatorname{Hom}_R(M, L^{\vee})$ is generated by the alternating matrices over S. More precisely, for any alternating $(n \times n)$ -matrix with entries in S, there exists a unique alternating matrix B_A of the same size such that

$$A \operatorname{adj}(X) = X^T B_A$$
,

and $\operatorname{Hom}_R(M, L^{\vee})$ consists of all homomorphisms induced by such pairs (A, B_A) . The entries of $B_A = (b_{ij})$ are given in terms of those of $A = (a_{kl})$:

$$b_{ij} = \sum_{k < l} (-1)^{i+j+k+l} a_{kl} [ij \widehat{\mid} kl],$$

where [ij | kl] denotes the $(n-2) \times (n-2)$ minor of X obtained by removing the i, j rows and k, l columns.

In particular, we obtain an answer to the open case of Bergman's question:

Theorem. When n is even, there exist invertible alternating matrices A over S; for such A, we have $\operatorname{adj}(X) = (A^{-1}X^T)B_A$, a nontrivial factorization of the adjoint.

Returning to $\operatorname{Ext}_R^1(L, L^{\vee})$, we compute the minimal graded S-free resolution and obtain

Theorem. $\operatorname{Ext}_{R}^{1}(L, L^{\vee})$ is a MCM module of rank one over $S/I_{n-1}(X)$, the ring defined by the submaximal minors of X. For each nonzero alternating matrix A with polynomial entries, there is an extension of L^{\vee} by L

$$0 \longrightarrow L^{\vee} \longrightarrow Q \longrightarrow L \longrightarrow 0$$

with Q an orientable MCM R-module of rank 2, given by the matrix factorization

$$\left(\begin{pmatrix} X^T & A \\ 0 & X \end{pmatrix}, \begin{pmatrix} \operatorname{adj}(X)^T & -B \\ 0 & \operatorname{adj}(X) \end{pmatrix}\right) \,.$$

Considering the middle terms Q of extensions in $\operatorname{Ext}^1_R(L, L^{\vee})$, we observe that for $n \geq 3$, the MCM-representation theory of the generic determinantal hypersurface is quite "wild", even restricted to orientable MCM modules of rank 2.

Theorem. Assume $n \geq 3$. Then there is a surjection from the isomorphism classes of extensions L^{\vee} by L to the principal ideals of a polynomial ring over k in $(n-2)^2$ variables. In particular, the MCM R-modules of rank 2 cannot be parametrized by the points of any finite-dimensional variety over k.

This last result stands in stark contrast to the situation when n = 2, wherein there are only three indecomposable MCM modules up to isomorphism: R, L, and L^{\vee} .

References

- G.M. Bergman, Can one factor the classical adjoint of a generic matrix?, Transformation Groups (2004), 1, to appear; see both the preliminary version of 08 June 2003 and a revised version of 08 August 2004 at http://front.math.ucdavis.edu/math.AC/0306126.
- [2] W. Bruns, Die Divisorenklassengruppe der Restklassenringe von Polynomenringen nach Determinantenidealen, Revue Roumaine Math. Pures Appl. 20 (1985), 1109–1111.
- [3] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. **260** (1980), 35–64.
- [4] D. Grayson and M. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
- [5] R. Ile, Deformation theory of rank one maximal Cohen-Macaulay modules on hypersurface singularities and the Scandinavian complex, Compositio Math. **140** (2004), 435–446.