LARGE INDECOMPOSABLE MCM MODULES

GRAHAM LEUSCHKE AND ROGER WIEGAND

August 21, 2008

Theorem. Let (S, \mathbf{n}) be a Cohen-Macaulay local ring of dimension at least two, and let Z be an indeterminate. Then $R := S[Z]/(Z^2)$ has unbounded Cohen-Macaulay type.

Proof. We will show that for every $n \ge 2$ there is an indecomposable MCM *R*-module of rank 2*n*. Fix $n \ge 2$, and let *W* be a free *S*-module of rank 2*n*. Let *I* be the $n \times n$ identity matrix and *J* the $n \times n$ nilpotent Jordan block with 1 on the superdiagonal and 0 elsewhere. Let $\{x, y\}$ be part of a minimal generating set for the maximal ideal **m** of *S*, and put $\varphi := xI + yJ$. Finally, put $\psi := \begin{bmatrix} 0 & \varphi \\ 0 & 0 \end{bmatrix}$. Noting that $\psi^2 = 0$, we make *W* into an *R*-module by letting *z* act as ψ . Then *W* is a MCM *R*-module, and we claim that it is indecomposable.

Suppose $W = U \oplus V$ as *R*-modules, with $U \neq W$. We want to show that U = 0. There is a $2n \times 2n$ idempotent matrix ε such that $U = \varepsilon(W) = \ker(1-\varepsilon)$ and $V = (1-\varepsilon)(W) = \ker(\varepsilon)$. Since *U* is an *R*-submodule of *W*, we have $\psi(U) \subseteq U$, that is, $(1-\varepsilon)\psi\varepsilon = 0$. Similarly, since $\psi(V) \subset V$, we have $\varepsilon\psi(1-\varepsilon) = 0$. Combining these two equations, we have

(1)
$$\psi \varepsilon = \varepsilon \psi.$$

Write $\varepsilon = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$, where each block is $n \times n$. From (1), we obtain the equation

(2)
$$\begin{bmatrix} \gamma x + J\gamma y & \delta x + J\delta y \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \alpha x + \alpha Jy \\ 0 & \gamma x + \gamma Jy \end{bmatrix}$$

Since $x + \mathbf{n}^2$ and $y + \mathbf{n}^2$ are linearly independent over $k := S/\mathbf{n}$, we get the equations

(3)
$$\bar{\gamma} = 0, \qquad \bar{\delta} = \bar{\alpha}, \qquad \bar{J}\bar{\delta} = \bar{\alpha}\bar{J},$$

where the bars denote reductions modulo **n**. Therefore $\bar{\varepsilon} = \begin{bmatrix} \bar{\alpha} & \bar{\beta} \\ 0 & \bar{\alpha} \end{bmatrix}$, and $\bar{\alpha}\bar{J} = \bar{J}\bar{\alpha}$. Since $\bar{\alpha}$ commutes with the non-derogatory matrix \bar{J} , $\bar{\alpha}$ belongs to $k[\bar{J}]$. In particular, $\bar{\alpha}$ is upper-triangular with a constant, say a, on the diagonal.

Since $U \neq W$, Nakayama's lemma implies that $\bar{\epsilon}$ is not surjective, whence a = 0. Therefore $\bar{\epsilon}^{2n} = 0$, and, since $\bar{\epsilon}^2 = \bar{\epsilon}$, we have $\bar{\epsilon} = 0$. By Nakayama's lemma, $1 - \epsilon$ is surjective and, being idempotent, must be equal to the identity matrix. Thus U = 0, as desired. \Box

References